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A3STRACT

A linearized model of rotorcraft dynamics has been
developed through the use of symbolic automatic equation
generating techniques. The dynamic model has been formulat-
ed in a unique way such that it can be used to analyze a
variety of rotor/body coup.ing problems including a rotor
mounted on a flexible shaft with a number of modes as well
as free-flight stability and control characteristics.
Direct comparison of the tirie response to longitudinal, lat-
eral and directional contrcl inputs at various trim condi-
tions shows that the linear model vyields good to very good
correlation with flight test. In particular it is shown that
a dynamic inflow model is essential to obtain good time
response correlation, especially for the hover trim condi-
tion. It also is shown that the main rotor wake interaction
with the tail rotor and fixed tail surfaces is a significant
contributor to the response at translational flight trim
conditions. A relatively simple model for the downwash and
sidewash at the tail surfeces based on flat vortex wake
theory is shown to produce cood agreement.

Then, the influence of rotor flap and lag dynamics on
automatic control systems feedback gain limitations is

investigated with the model. It is shown that the blade
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dynamics, especially lagging dynamics, can severely limit
the useable values of the feedback gain for simple feedback
control and that multivariable optimal control theory is a
powerful tool to design high gain augmentation control sys-
tem. The frequency-shaped optimal control design can offer
much better flight dynamic :characteristics and a stable mar-
gin for the feedback systen without need to model the lag-

ging dynamics.

- iii -



BIBLIOGRAPHY

The following papers were presented as part of this grant:-
Curtiss, H. C., Jr., Stability and Iontrcl Modelling, paper No. 41,
Twelfth European Rotorcraft Forum, Garmisch-Partenkirchen,

Federal Republic of Germany, Saptember 22-24, 1986.

Zhao, X., Curtiss, H. C., Jr., A Linearized Model of Helicopter
Dynamics Including Correlation with Flight Test, 2nd
International Conference on Rotorcraft Basic Research,

College Park, MD, February 1983.

In addition two presentations :consisting of figures only
were made:

Curtiss, H. C., Jr., McKillip, R. M., Stability and Control
Modelling, Workshop on Dynamics and Aeroelastic Stability
Modeling of Rotor Systems, Atlanta, GA, December 4-5, 1985.

Curtiss, H. C., Jr., The Influence of Blade Degrees of Freedom
and Dynamic Inflow on Helicopter Stability and Control.
Second Technical Workshop on Dynamics and Aerocelastic
Modeling of Rotorcraft Systems, Florida Atlantic University,

November 18-20, 1987.

iv



Y

CrEeENAL Pl 13

OF PUOR QUALIT(

CONTENTS
Abstract ii
Bibliography iv
List of Tables viii
List of Figures ix
Chapter 1: Introduction and Background . 1
1.1: Introduction 1
1.2: Approaches For Analysis of Coupled Rotor/
Fuselage System 4
1.3: Outline of Previonus Work 8
Chapter 2: A Linear Dynamic Mathematical Model For
Coupled Rotor/Fuselage System 15
2.1: Background and Introduction : 15
2.2: General Description of Model 17
2.3: Reference Frames 18
2.4: Rotor Blade Model 22
2.5: Inertial Analysis 22
2.6: Rotor Blade Aerodynamic Model 23
2.7: Dynamic Inflow 24



Chapter

Chapter

Chapter

NN N N

(O 0}

(LRGN RV RS

ORIGINAL PACE IS
OF POOR QUALITY

Linearization

Influence of The Rotor Wake on The Tail

Rotor and Fixed Tail Surfaces

Introduction
Theory of Lifting Airscrews With a Flat
Vortex System
Influence of the Rotor Wake on the Tail

Surfaces

Verification of the Model

Introduction
Hover
Forward Flight

Conclusions

Influence of the Blade Dynamics on the

Feedback Control System Design

Introduction

Simple Feedback Control

2.1: Attitude Feedback at Hover

2.2: Attitude Feedback in Forward Flight
2.3: Pitch Rate Feedback

2.4: Roll Rate Feedback

2.5: Summary

Multivariable Optimal Control

Standard Performance Index

3.1:
.3.2: Frequency-Shaped Performance Index

- yvi =

26

28

28

29

30

37

37
38
44

58

61

61
65

66
77
90
a3
98

101

103
109



5.3.3: Simplified Optimal Control
5.3.4: Summary

Chapter 6: Conclusions and Recommendations
References

Appendix A: Derivation of 5ystem Equations of Motion
Appendix B: Pitt's Model of Dynamic Inflow

Appendix C: Flat Vortex Theory For Nonuniform Inflow

- vii -

126
131

133

137

142

148

149



ORIGINAL PAGE IS |
OF POOR QUALITY LIST OF TABLES
TABLE 5-1 Poles, Zeros and Approxirate Transfer Function
of Lateral Helicopter Dynamics at Hover 71
TABLE 5-2 Poles, Zeros and Approximate Transfer Function
of Longitudinal Helicopter Dynamics at Hover 76
TABLE 5-3 Poles, Zeros and Approximate Transfer Function
of Lateral Helicopter Dynamics at 60KTS 79
TABLE 5-4 Poles, Zeros and Approximate Transfer Function
of Lateral Helicopter Dynamics at 100KTS 80
TABLE 5-5 Poles, Zeros and Approximate Transfer Function
of Longitudinal Helicopter Dynamics at 60KTS 88
TABLE 5-6 Poles, Zeros and Approximate Transfer Function
of Longitudinal Helicopter Dynamics at 100KTS 89
Table 5-7 The Primary Feedback Gains and The Damping of Lag
Modes For Standard Optimal Feedback at Hover 105
Table 5-8 The Primary Feedback Gains and The Damping of Lag
Modes For Standard Optimal Feedback at 60 KTS 106
Table 5-9 The Primary Feedback Gains and The Damping of Lag
Modes For Standard Optimal Feedback at 100 KTS 107
Table 5-10 The Primary Feedback Gains and The Damping of Lag Modes
For Frequency Shaped Optimal Feedback at Hover 112
Table 5-11 The Primary Feedback Gains and The Damping of Lag Modes
For Frequency Shaped Optimal Feedback at 60 KTS 113
Table 5-12 The Primary Feedback Gains and The Damping of Lag Modes
For Frequency Shaped Optimal Feedback at 100 KTS 114
Table 5-13 The Poles Associated Wita The Short Period Flight
Dynamic Characteristics »f The Helicopter Under 115
Standard Optimal Feedback
Table 5-14 The Poles Associated Wita The Short Period Flight
Dynamical Characteristics of The Helicopter Under
Frequency Shaped Optimal Feedback 116
Table 5-15 The Poles Associated Witih The Short Period Flight
Dynamic Characteristics of The Helicopter Under
Simplified Standard Optimal Feedback 128
Table 5-16 The Poles Associated Wit The Short Period Flight
Dynamical Characteristics of The Helicopter Under
Simplified Fregquency Shaped Optimal Feedback 129

- viii -



Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.

Fig.

Fig.

Fig

Fig

ORIGINAL PAGE IS
OF POCR QUALITY

LIST OF FIGURES

2-1 The F1 System of Coordinates 1%
2-2 The Fz System of Coordinates 19
2-3 The H System of Coordinates 21
2-4 The B System of Coordinates 21
3-1 Lateral Distribution of Downwash 32
3-2 Vertical Distribution of Sidewash 32

3-3 Roll Moment Produced by Horizontal Tail as a

Function of Sideslip Angle 35

3-4 Pitch Moment

Produced by Horizontal Tail as a

Function of Sideslip Angle 36

4-1 Comparison of

Calculated Responses and Flight-Test Data

(Roll Rate Response to 1l-in Right Cyclic Input, Hover) 39

4-2 Comparison of

Calculated Responses and Flight-Test Data

(Pitch Rate Response to 1-in Right Cyclic Input, Hover) 39

. 4-3 Comparison of
(Yaw Rate Response

. 4~-4 Comparison of

(Pitch Rate Response

Fig

Fig

. 4-5 Comparison of
(Roll Rate Response

. 4-6 Comparison of

Calculated Responses and Flight-Test Data
to 1-in Right Cyclic Input, Hover) 39

Calculated Responses and Flight-Test Data
to 0.5-in Forward Cyclic Input, Hover) 41

Calculated Responses and Flight-Test Data
to 0.5-in Forward Cyclic Input, Hover) 41

Calculated Responses and Flight-Test Data

(Yaw Rate Response to 0.5-in Forward Cyclic Input, Hover) 41

Fig. 4-7 Comparison of Calculated Responses and Flight-Test Data

(Yaw Rate Response

to 1l-in Left Pedal Input, Hover) 43

Fig. 4-8 Comparison of Calculated Responses and Flight-Test Data
(Roll Rate Response to 1-in Left Pedal Input, Hover) 43

Fig. 4-9 Comparison of Calculated Responses and Flight-Test Data
(Pitch Rate Response to l-in Left Pedal Input, Hover) 43

Fig. 4-10 Comparison of Calculated Responses and Flight-Test Data
(Pitch Rate Response to 0.5-in Right Pedal Input, 60 KTS) 45

- iX =



Fig. 4-11 Comparison of Calculated Responses and Flight-Test Data
(Yaw Rate Response to 0.5-in Right Pedal Input, 60 KTS) 45

Fig. 4-12 Comparison of Calculated Responses and Flight-Test Data
(Roll Rate Response to 0.5-in Right Pedal Input, 60 KTS) 45

Fig. 4-13 Comparison of Calculated Responses and Flight-Test Data
(Roll Rate Response to 1l-in Left Cyclic Input, 60 KTS) 47

Fig. 4-14 Comparison of Calculated Responses and Flight-Test Data
(Pitch Rate Response to 1-in Left Cyclic Input, 60 KTS) 47

Fig. 4-15 Comparison of Calculatedl Responses and Flight-Test Data
(Yaw Rate Response to 1l-in Left Cyclic Input, 60 KTS) 47

Fig. 4-16 Comparison of Calculatedl Responses and Flight-Test Data
(Pitch Rate Response to l-in Forward Cyclic Input, 100 KTS) 48

Fig. 4-17 Comparison of Calculateil Responses and Flight-Test Data
(Roll Rate Response to 1l-in Forward Cyclic Input, 100 KTS) 48

Fig. 4-18 Comparison of Calculated Responses and Flight-Test Data
(Yaw Rate Response to 1l-in Forward Cyclic Input, 100 KTS) 48

Fig. 4-19 Comparison of Calculatedl Responses and Flight-Test Data
(Pitch Rate Response to 1-in Right Pedal Input, 100 KTS) 50

Fig. 4-20 Comparison of Calculated Responses and Flight-Test Data
(Yaw Rate Response to 1-in Right Pedal Input, 100 KTS) 50

Fig. 4-21 Comparison of Calculatei Responses and Flight-Test Data
(Roll Rate Response to 1l-in Right Pedal Input, 100 KTS) 50

Fig. 4-22 Comparison of Calculated Responses and Flight-Test Data
(Roll Rate Response to 1-in Lateral Cyclic Input, 140 KTS) 52

Fig. 4-23 Comparison of Calculate« Responses and Flight-Test Data
(Yaw Rate Response to 1-in Lateral Cyclic Input, 140 KTS) 52

Fig. 4-24 Comparison of Calculated Responses and Flight-Test Data
(Pitch Rate Response to 1l-in Lat:eral Cyclic Input, 140 KTS) 52

Fig. 4-25 Comparison of Calculate« Responses and Flight-Test Data

(Yaw Rate Response to 0.5-in Pedal Input, 140 KTS) 53

Fig. 4-26 Comparison of Calculate«d Responses and Flight-Test Data
(Pitch Rate Response to 0.5-+in Pedal Input, 140 KTS) 53

Fig. 4-27 Comparison of Calculated Responses and Flight-Test Data
(Roll Rate Response to 0.5-in Pedal Input, 140 KTS) 53

Fig. 4-28 Comparison of Calculated Responses and Flight-Test Data
(Yaw Rate Response to 1l-in Right Pedal Input, 100 KTS) 56

-x-

ORIGIVAL PaGE s
OF POOR QUALITY



Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fiqg.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

SRIGIMAL PAGE IS

OF POR QUALITY

4-29 Comparison of Calculated Responses and Flight-Test Data
(Pitch Rate Response to 1-in Right Pedal Input, 100 KTS)

56

4-30 Comparison of Calculated Responses and Flight-Test Data
(Roll Rate Response to 1-in Fight Pedal Input, 100 KTS)

56

4-31 Comparison of Calculated Responses and Flight-Test Data
(Yaw Rate Response to l-in Left Pedal Input, 100 KTS)

57

4-32 Comparison of Calculated Responses and Flight-Test Data
(Pitch Rate Response to 1-in Left Pedal Input, 100 KTS)

57

4-33 Comparison of Calculated Responses and Flight~-Test Data
(Roll Rate Response to 1l-in Left Pedal Input, 100 KTS)

5-1

5-2

5=-3

5-4

5-12

n
]

13

The Helicopter Rotor/Fuselage System Open Loop Roots

at Hover

The Helicopter Rotor/Fuselage System Open Loop Roots

at Hover

(Detail)

The Root Loci of The Helicopter With Roll Attitude
Feedback to Lateral Cyclic Input at Hover

Frequency Response of ¢”A,5 With Roll Attitude
Feedback to Lateral Cyclic Input, Hover

The Root Loci of The He_ icopter With Pitch Attitude
Feedback to Longitudina. Cyclic Input at Hover

The Helicopter Rotor/Fuselage System Open Loop Roots
at 60 KTS and 100 KTS

The Root Loci of The Helicopter With Roll Attitude
Feedback to Lateral Cyclic Input at 60 KTS

The Root Loci of The Helicopter With Roll Attitude
Feedback to Lateral Cyclic Input at 100 KTS

Frequency Response of ¢“A,_ With Roll Attitude
Feedback to Lateral Cyclic, 60 KTS

Frequency Response of ¢’A,5 With Roll Attitude
to Lateral Cyclic Input, 100 KTS

Feedback

The Root
Feedback

The Root
Feedback

The Root
Feedback

Loci of The Helicopter
to Longitudinal Cyclic

Loci of The Helicopter
to Longitudinal Cyclic

Loci of The Helicopter
to Longitudinal Cyclic

- Xj -

With Pitch Attitude
Input at 60 KTS

With Pitch Attitude
Input at 100 KTS

With Pitch Rate
Input at Hover

57

67

68

70

73

74

78

82

82

83

84

86

86

91



Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

The Root Loci of The Helicopter With Pitch Rate
Feedback to Longitudinal Cyclic Input at 60 KTS

The Root Loci of The Helicopter With Pitch Rate
Feedback to Longitudinal Cyclic Input at 100 KTS

Effect of Pitch Rate Feedback on The Damping of
Advancing Lag Mode

Effect of Roll Rate Feedback on The Damping of
Advancing Lag Mode

Effect of Roll Rate Feedback on The Damping of
Coning Lag Mode

Effect of Mechanical Lag Damping on The Damping
of Advancing Lag Mode With Different Roll Rate
Feedback Gains

Fregquency Response of ¢/A;5 With Roll Rate
Feedback to Lateral Cyclic Input, Hover

Frequency Response of #7A _ With Roll Rate
Feedback to Lateral Cyclic Input, 60 KTS

Frequency Response of ¢7A _ With Roll Rate
Feedback to Lateral Cyclic Input, 100 KTS
Frequency Response of ¢’A1 With Standard Optimal
Feedback at Hover

S

Frequency Response of ¢fA15 With Standard Optimal
Feedback at 60 KTS

Frequency Response of g-A With Standard Optimal
Feedback at 100 KTS te

Frequency Response of ¢/A35 With Fregquency Shaped
Optimal Feedback at Hover

Frequency Response of w/AHEWith Fregquency Shaped
Optimal Feedback at 60 KTS

Frequency Response of ¢’A35 With Frequency Shaped
Optimal Feedback at 100 KTS

ORMENAL PAGE U2

OF POOR QuUALITY

- Xii -

92

94

94

96

96

97

99

100

118

119

120

121

122

123



Chapter 1

INTRODUCTICN AND BACKGROUND

1.1 Introduction

Aercelastic and aeromechanical stability, control and
response problems associated with rotary-wing aircraft rep-
resent some of the most challenging problems in the area of
dynamic systems. Due to the complicated nature of the prob-
lem, stability and control analysis is usually treatéd sepa-
rately from aeroelastic and aeromechanical stability.
Aeroelastic analyses usually concentrate on the character of
the system eigenvalues and do not concern themselves with
system response characteristics. 1In many instances, stabil-
ity and control analyses ar: based on a guasi-static, rigid-
body stablity-and-control-derivative model in which the
blade dynamics are neglected and the rotor lag and flap
angles are determined from the instantaneous value of the
body angular and translational displacements, rates, and
accelerations.

Although use of the conventional quasi-static stability
derivative model is adequate for many applications associat-
ed with low-frequency and steady-state flight behavior and
promotes physical insight, the true physical behavior of the

highly coupled rotor/fuselage dynamical system can only be
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2
captured by developing a mathematical model based upon a
consistent formulation in which the influence of the coupled
body blade motion is properly incorporated. Many years ago,
C.W.Ellis{l] found that the conventional quasi-static
stability-derivative model was not representative of the
higher freguency short-period dynamics, owing to the strong
influence of the unmodeled rotor modes. R.E.Donham and
S.V.Cardinale[2] concluded that the oscillating rotor could
excite the body's natural modes, and showed that a body
attitude feedback system had an important influence on the
total system stability. Hansen[3] has noted the importance
of the flapping dynamics in parameter identification stud~
ies.

Along with the development of feedback control systems,
especially with an increasing emphasis on superaugmented,
high-gain flight control systems for military rotorcraft in
order to meet the requirem=nts for demanding misson tasks
such as nap-of-the-Earth(NoDE) flight, blade dynamics are
increasingly important in the flight dynamic analysis of
helicopters. In the design and analysis of such high gain
control systems, it is essential that high-order dynamics of
the system components be adequately modeled. In theoretical
analyses, K.Miyajima[4] has found that the blade-flapping
regressing mode should be :ncluded in a stability and con-
trol augmentation system design, otherwise a very important

oscillatory mode with short period frequencies would not be
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included. H.C.Curtiss[5] has found that for helicopter con-
trol systems attitude feedback gain is limited primarily by
body-flap coupling, and rate gain is limited by the lag
degrees of freedom. It is also shown that dynamic inflow
produces significant changes in the modes of motion and
response of the system. W.E.Hall[6] has shown that, for
tight control, neglecting the rotor dynamics in designing a
high gain feedback system results in unstable closed-loop
responses when the rotor flap dynamics are included. In
practice, the operators of variable-stability research heli-
copters have long been aware of severe limitations in feed-
back gain settings when attempting to increase the bandwidth
of flight control systems. These same limitations have also
been encountered in the helicopter industry, where achiev-
able stability augmentation system gains obtained from
flight tests have often been far below predicted values[7].
Even for the vibration analysis of helicopters it has been
concluded that the method of rotor induced vibration pre-
diction by applying the rotor forces and moments acting on a
rigid support to the flexible airframe can lead to large
errors of either over or under prediction of vibrations[8].

In addition, with the shift of emphasis in hingeless and
bearingless rotor design to soft-inplane configurations,
coupled rotor/fuselage mechanical instability becomes one of
the main concerns of designers and researchers. This is not

only because there is strony coupling between the rotor and
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fuselage and therefore the aeromechanical stability charac-
teristics are highly sensitive to aerodynamic and structural
feedback, but also because the influences of the aeroelastic
coupling, which can play a key role in alleviating aerome-
chanical instability, often are different on the coupled
rotor/fuselage system than on the isolated blade([9].

Hence, there is a widespread need for analyses capable of
modeling coupled rotor/fuselage aerocelastic or aeromechani-

cal systems.

1.2 Approaches For Analysis of Coupled Rotor/Fuselage

System

For a subject as complex as coupled rotor/fuselage sys-
tems, an adequate understanding of physical phenomena can
not be attained unless a re¢asonably accurate analytical rep-.
resentation of the system has been developed and verified.
Such a representation is necessary to provide a usable
design tool, to develop &n understanding of configuration
behavior through systematic parametric studies, and to
search for and evaluate the feasibility of particular
advanced configuration concepts. Because of the complexity
of the description of the coupled rotor/fuselage system, an
important element of the development of practical analytical
tools is to determine what is an acceptable level of approx-
imation for the various parts of the analysis. It is impor-
tant to avoid making a design tool impractically large for

efficient computation.



5

Several mathematical approaches are available for heli-
copter analysts to perforn a coupled rotor/fuselage analy-
sis. The most popular or.es are mode displacement, force
integration, and matrix displacement methods.

The mode displacement method allows a completely coupled
rotor/fuselage system to be analyzed by replacing rotor
inertia couplings in the fuselage equations with stiffness
coupling; therefore the use of it enables a simplified
sequential solution of the coupled rotor/fuselage dynamic
equations. Most analysis methods result in inertial
coupling between the rotor and the fuselage in both sets of
equations. However, the mode displacement approach allows a
simpler stiffness type coupling of the rotor degrees of
freedom in the fuselage equations. This is possible since
modal coefficients are used to calculate hub shears and hub
moments, eliminating the acceleration terms in the fuselage/
pylon equations that are due to the rotor degrees of free-
dom. The sequence of calculation begins with three indepen-
dent computations for airframe and rotor aerodynamic forces,
and hub shears and moments. The computation of the hub
shears and moments is the process which actually wuses’ the
mode-displacement method. The aerodynamic forces acting ‘on
the airframe and the rotor are also calculated. These aero-
dynamic forces form the forcing function for the rigid-body
fuselage accelerations. After the rigid body fuselage accel-

erations are calculated, they are wused in conjunction with

ORIGINAL ¥ /1
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6
the hub shears and moments to calculate the acceleration of
pylon coordinates at the fcllowing step. Additional inertia
forces on the rotor which were not included in the calcula-
tion of the rotor modes are calculated from the fuselage and
pylon accelerations. These inertia forces are then added to
the rotor aerodynamic force calculated previously in order
to calculate the accelerations of the rotor modal coordi-
nates. Thus, accelerations are calculated for all of the
degrees of freedom without having to solve a large set of
simultaneous algebraic equations.

The force integration method is wused to compute hub
shears and moments by integrating dynamic and aerodynamic
forces along each rotor blade. The analysis treats the rotor
equations separately from those of the nonrotating system.
In the rotor equations, inertial coupling terms due to
pylon/fuselage motions are written explicitly and assumed to
be kXnown at a particular time point. To solve the rotor
equations of motion at time t, the hub and pylon displace-
ment, velocity, and acce.eration vectors are obtained from
the solution of the equations of motion for the nonrotating
system at the previous timne point. A predictor-corrector
method is used for numerical integration of the rotor accel-
eration variables to obtain rotor velocity and displacement
components. Equations oI the pylon/fuselage system are
derived with hub shears and hub moments appearing on the

right side of the equations. The hub forces are calculated
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by integrating inertial ard aerodynamic loading from blade
tip to blade root for each blade and summing up for all the
blades. The force integration is performed to a time point
at which the predictor-corrector has converged the solution
of the rotor equations. Civen the hub shears and moments,
the equations of motion fcr the pylon/fuselage are solved.
The results define the hut motions which provide the fuse-
lage inertial coupling terms in the rotor equations at the
next time point.

These two approaches are widely used in the helicopter
industry to calculate the rotor 1loads and the response of
the coupled rotor/fuselage system. The disadvantage of these
approaches 1s due to the fact that time histories are
obtained by input integration so that quantitative stability
analysis is not applicable, and they are not convenient for
the systematic parametric studies as well. For most aeroe-
lastic and aeromechanical stability and control problems,
the matrix displacement method may be a good alternative.

The matrix displacement method wuses a generalized
coupling procedure which allows analysis of structural com-
ponents in rotating and ncnrotating reference frames. The
method automates the dynamic couplings between the rotating
and nonrotating systems and takes advantage of the high
speed computer for the algebraic manipulation. Vector
transformations are used in the method to generate position

vectors for blade and fuselage points in fixed coordinates.
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Then by wusing the Lagrang.an approach, for example, the
inertial contributions of the equations of motion for the
coupled rotor/fuselage system are obtained. The same trans-
formation also is used to generate air speeds and incidence
angles relative to local blade sections, and through appli-
cation of strip theory, for example, to obtain the aerody-
namic generalized force contributions for the system. The
disadvantage of the matrix displacement method is that some
of the dynamic coupling terms carried in the component equa-
tion are cancelled if the equations are derived explicitly
for the coupled system. This consumes more computer time and
possibly degrades accuracy in the numerical solution.
Therefore, the matrix displacement method suggests a via-
ble engineering tool for solving coupled rotor/fuselage
problems. In this thesis, with the help of a symbolic com-
puter processor, the matrix displacement method is used to
obtain a coupled rotor-fuselage helicopter system descrip-

tion.

1.3 Outline of Previous work

A number of powerful aralyses which have been developed
by industry and the government are developed or verified for
only a particular techniczl problem that reflects the spe-
cific interest of the oricinating organization. A typical
example is shown in Ref.10. The coupled rotor/fuselage sys-

tem model 1is designed for the Black Hawk simulation. The
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model is a total system description and allows the simula-
tion of any flight condition which can be experienced by a
pilot. The mechanical and aerodynamic data used in the mod-~-
el are provided by wind tunnel tests for full angle of
attack range.

Several researchers constructed mathematical models for
the general coupled rotor/fuselage systems. W.Warmbrodt and
P.Friedmann [11] have derived the governing equations of
motion of a helicopter rotor coupled to a rigid body fuse-
lage, which can be used to study coupled rotor/fuselage
dynamics in forward flight. The final egquations are pre-
sented in partial differential equations and the blade equa-
tions of motion are written in a rotating reference system
whereas the matching conditions between the rotor and fuse-
lage are written 1in a nonrotating reference frame.
W.Johnson[12] has develored a comprehensive analysis for
rotorcraft which is capable of modeling coupled rotor/
fuselage problems by an integrated Newtonian approach. A
modal representation is used to transform the partial dif-
ferential equations to ordinary differential equations,
which is equivalent to & Galerkin analysis based on the
orthogonal modes of free vibration for the rotating blade.
I1ts solution procedures for the transient, aeroelastic sta-
bility, and flight dynamics analyses begin from the harmonic
balanced trim solution. Then the flight dynamics analysis

calculates the rotor and airframe stability derivatives, and
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constructs linear differential equations for the aircraft
rigid body motions; the poles, zeros, and eigenvectors of
these equations define the aircraft flying qualities. The
transient analysis numerically integrates the rigid body
equations of motion for a prescribed control or gust input.
The aeroelastic stability analysis constructs a set of lin-
ear differential equations describing the motion of the
rotor and aircraft; the eigenvalues of these equations
define the system stability.

Although their intention was to produce an analysis that
is applicable to a wide range of problems and a wide class
of vehicles, these nonlinear, periodic-coefficient, partial
or ordinary differential aquations are too complex to get
physical insight for general understanding and the theoreti-
cal analysis. They are also not convenient for the system-
atic parametric studies. For analytical simplicity and an
use as basis of the design of feedback control systems, a
linear description of the system is highly desirable, espe-~
cially if it can be shown o agree with experiment.

Owing to the complexity of including blade dynamics in
forward flight, linearized models in the literature are lim-
ited to the hover case.

Hodges [13] has developed a system of linear, homogenous,
ordinary differential equa“tions which is suitable for model-
ing the aeromechanical stability of both bearingless and

hingeless rotor in hover. The flexbeam equilibrium deflec-
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11
tions are calculated througi a nonlinear numerical iteration
process, and the flexbeam structural loads for small pertur-
bation of the eguilibrium are determined through numerical
perturbation of the equilibr-ium solution. By using the mul-
tiblade coordinate transformation, the terms with periodic
coefficient are removed; Therefore, the resulting constant-
coefficient equations can be solved as a conventional eigen-
value problem.

Another derivation of the air resonance problem in hover
of an N-bladed hingeless roftor helicopter has been developed
by Levin{14]. In his study the final equations of.dynamic
equilibrium are reduced to ordinary differential form by
using Galerkin's method with a relatively small number of
rotating blade modes. Prov.sion for introducing active con-
trol of the rotor with the intent of eliminating the air
resonance instability is included in the formulation.

A third model[15] by Lytwyn and Miao is obtained by
means of the Lagrangian procedure. The virtual hinge repre-
sentation has been used for the first in-plane (lead-lag)
and the first vertical bending modes of each of the blades.

The most important assumptions wupon which these formula-
tions are based are: (1) the helicopter is in hover with low
disc loading (low inflow ratio), (2) the rigid fuselage has
only two translational degrees of freedom and two rotational
degrees of freedom; vertical translation and rotation about

the vertical axis (yawing) are eliminated, (3) the rotor
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consists of three or more hingeless blades, (4) each blade
can bend in two mutually perpendicular direction normal to
the elastic axis.

Several kinds of model mentioned above have been used in
analyses of the aeroelastiz and aeromechanical stability,
response, and control problem. Hodges has conducted a theo-
retical study of aeromechanical stability of bearingless
rotors in hover by comparinj the hub-fixed motion, i.e. iso-
lated blade stability, with the case when coupled rotor/
fuselage motion is considered. His studies dealt mostly
with a soft-in-plane configuration using quasisteady aerody-
namics. Straub and Warmbrodt[16] have studied the wuse of
active blade control to increase helicopter rotor/fuselage
damping. The chosen feedback parameters include cyclic rotor
flap and lead-lag states, and the study focuses on ground
resonance. Curtiss[5] has studied the influence of rotor
dynamics and dynamic inflcw on the stability and control
characteristics of single rotor helicopter in hover, and
discussed the body attitucde and rate feedback limitations
which arise due to rotor dynamics and dynamic inflow.

The restriction for obtazining a linearized model for for-
ward flight is due partly to the complexity of the blade
motion of the helicopter so that the algebra is increased
substantially. This has led to attempts to share the alge-
bra with computers through symbolic processors. Both general

and special purpose programs have been developed and are
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available. Another difficulty faced for extending the lin-
earized modeling to forwerd flight is that the multiblade
transformation will not remove all periodic coefficients.
Therefore the resulting linear dynamic system description
will be time-varying. Hcwever, it has been found that the
constant coefficient apprcximation for the remaining period-
ic coefficients 1is satisfactory for low=-frequency modes
under trimmed conditions[17]. Furthermore, all of the lin-
earized models for hover assume that yaw motion and vertical
motion of the helicopter are totally uncoupled; this is not
the case for forward flight. In addition, the tail rotor and
fixed tail surfaces, whicn operate in an extremely adverse
aerodynamic and dynamic environment, must be taken into
account. As a result, a relatively simple induced velocity
model at tail position due to the influence of the main
rotor wake is needed for a good overall system modelling.

With this background in<‘ormation established, the remain-
der of this thesis can be outlined. The first task undertak-
en will be to construct a linearized dynamic mathematical
model for coupled rotor/fuselage helicopter system for both
hover and forward flight by use of symbolic automatic equa-
tion generating techniques Also a relatively simple model
for the downwash and sidewiash at the tail surfaces based on
flat vortex wake theory is employed to take the main rotor
wake interaction with the tail rotor and fixed tails into

account. The model will then be verified by comparing the
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response time histories for various prescribed control
inputs at various trim conditions with the flight test
results of Ref.18, which is obtained by a flight test pro-
gram solely for the purpose of validating mathematical mod-
els of the Black Hawk helicopter. 1In addition, a study will
be made of the influence of the blade flap and lag dynamics
on automatic control system feedback gain limitations at

hover and translational flight conditions.



Chapter I1I
A LINEAR DYNAMIC MATHIMATICAL MODEL FOR COUFPLED

ROTOR/FUSELAGE SYSTEM

2.1 Background and Introduction

One distinction of the zoupled rotor/fuselage system is
the fact that the analysis must accommodate both rotating
and nonrotating coordinate systems. For the coupled rotor/
fuselage system, the equations for each blade, wﬁich are
usually written in a coordinate system rotating at a con-
stant velocity, are transformed to a nonrotating coordinate
system, to be combined with each other and with the fuselage
system. Consequently, it is difficult to obtain the system
description using a Newtonian approach because the required
blade acceleration terms are very complex. The Lagrangian
approach, which requires only velocity terms and position
terms, is much more convenient for overall system modeling.

Another distinction of the coupled rotor/fuselage system
is the increased number of degrees of freedom, which sub-
stantially increases the algebraic complexity in expressing
the inertia and aerodynamic loads. In order to generate
reasonably comprehensive aeroelastic equations of motion for
a helicopter rotor, several axes of reference are usually

required in the analysis. Thus, a material point on a rotor
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blade can most conveniently have its position coordinates
defined by means of successive axis transformations.
Although none of the transformations that change the co-
ordinates of a point from one axis system to another may be
particularly complicated. when equations of motion are
derived through the use of Lagrange's equations, the exer-
cise can prove quite arduous. The derivation of the equa-
tions involves a certain amount of differentiation, which,
combined with the successive transformations, leads to an
enormous amount of work on paper for the analyst. Further-
more, the possibility of errors creeping into the analysis
is almost unavoidable.

Fortunately, there are serveral symbolic computer proces-
sors available for generecl computer systems so that it is
possible to develop the system equations directly on the
computer. The program generates the steady-state and lin-
earized perturbation equations in symbolic form and then
codes them into FORTRAN subroutines. Subsequently the coef-
ficients for each equatior and for each mode are identified
through a numerical program. Through the use of symbolic
automatic equation generating techniques, the final system
equations are obtained in a systematic way. This also makes
it relatively easy to rigorously investigate the effect of

various ordering schemes cn the calculated motion dynamics.
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2.2 General Description oi Model

The complete dynamic description of the multidimensional
system is formulated by means of the Lagrangian procedure.
The final set of linear second-order differential equations
is obtained by a perturbation analysis performed on the set
of original nonlinear eqgquat.ons.

The model has N degrees of freedom, each associated with
a generalized coordinate and a corresponding mode shape.
The model includes a number of rotor blades on one hub and a
fuselage. Each rotor blad: undergoes flap bending and lag
bending; the torsional deflections are not included. Qua-
sisteady strip theory is used to obtain the aerodynamic
loads. Unsteady aerodynamic effects are introduced through
dynamic inflow modelling. Dynamic stall and reverse flow
effects are not included.

In this work, the model is of order 24 or 27 depending on
whether dynamic inflow is included for a better modelling of
unsteady aerodynamics. The fuselage has six degrees of
freedom: vertical, 1longitudinal, and'lateral translation,
pitch, roll, and yaw motions, each associated with two state
variables. The equations of motion are formulated in such a
way that they can be extended to N degrees of freedom to
include the effects of flexibility between fuselage and the
hub without any change in the blade motion part of the mod-
el. Each blade has 2 degrees of freedom, flapping and lag-

ging, each corresponding to two state variables. When the
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blade motion is converted to the fixed frame through the use
of multiblade coordinates, six degrees of freedom result
(e.g. coning, 1lateral and longitudinal tilt of the rotor
plane for flap) each associated with two state variables.
Dynamic inflow adds three more state variables. Céntrol
inputs are collective pitcn of the blade, lateral and longi-
tudinal cyclic pitch of the blade, and collective pitch of
the tail rotor. Rotor RPM is assumed constant. Blade pitch
changes due to flapping, lagging, and fuselage deformation
and motion by the rotor lwub geometry and elastic coupling
can be taken into account.

The equations of the system are obtained by algebraic
manipulation performed with the symbolic system REDUCE on
the IBM computer at computer center at Princeton University,
and is checked with the synbolic system MACSYMA at the Labo-

ratory for Control and Autcmation at Princeton.

2.3 Reference Frames

Because we use a Lagrargian approach, we have to begin
our systems of coordinates in an inertial frame, the E sys-
tem, the earth axis. The basic systems of coordinates are
the F; and Fz systems which are shown in Fig. 2-1 and Fig.
2-2. The origins of these systems are placed at undisturbed
and disturbed hub centers respectively while 2& coincide
with the shaft direction, and Xf points toward the rear of

the helicopter. These are systems which do not rotate with
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the hub. The F_ system moves due to the fuselage trim
motion without perturbation, a Galilean frame. The Fz sys-
tem moves relative to F1 due to small perturbations which
result from disturbed fuselage rotations and translations.
The equations are formalized so that the elastic deforma-
tions may also be included, depending on the definition of a
transformation expressing the hub motion relative to the
fuselage in terms of the generalized coordinates. In the
linearization of the system, this transformation is also
linearized under an assumption of small perturbations and is
assigned as a set of system input parameters to offer more
flexibility for the model. By selection of the set of the
input parameters, it is possible to investigate the dynamics
of a rotor on a flexible shaft or the free motion of a heli-
copter like that in this thesis, or some combinations of the
two.

The third system of coordinates is the H (hub) system,
which is rotating with the hub (See Fig. 2-3). The co-
ordinate axes 2h and Zfz coincide, while the H system
rotates about the 2fz axis with an constant angular veloci-
ty, relative to the Fz system. When the azimuthal angle of
the H system relative to the Fz system is zero, the two sys-
tems coincide. The next system of co-ordinates is the blade
system B (See Fig. 2-4), which is fixed to the rigid blade
and is displaced from the H system by offset and rotates due

to lag and flap. See Appendix A for more detail.
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2.4 Rotor Blade Model

The rotor blade is assumed to be a rigid beam with an
offset hinge for a fully articulated rotor. A proper combi-
nation of a hinge offset and springs about the hinge can be
used to represent a hingeless rotor. This model can incorpo-
rate the effects of blade and hub stiffness by two sets of
springs inboard and outboard of the hinge. Furthermore,
flap-lag-pitch-fuselage structural coupling can be easily
incorporated, Spring restrained hinges can be used to model
a bearingless rotor.

The coning angles both for flapping and lagging are con-
sidered as variables becauase in forward flight there is

coupling between the coning and the first harmonic terms.

2.5 Inertial Analysis

The position of an elemeat of a blade first is written in
the B frame. It is assumed that the blade can be modelled

as a slender rod with all of its mass located on (X 0, 01.

b’
Using a series of transformations, we can express the posi-
tion of the blade element in the inertia axis, the E system.
Then, it is straightforward to obtain the local velocity and
the kinetic energy. The same approach applies to the fuse-
lage as well. After integrating along the blade, combining
the blade with the fuselage and taking required differentia-
tions, the contribution of the kinetic energy to the equa-

tions of motion is obtained The kinetic energy contribu-

tion of the tail rotor is neglected.
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For the potential eneryy, the terms due to the gravity of
the blades are neglected but those from the fuselage are
included. To model a hingeless or bearingless rotor, two
other spring potential terms are added for including the
elastic potential resulting from the deformations of the

flapping and lagging.

2.6 Rotor Blade Aerodynamic Model

First, we get exXpressions of the normal and tangential
velocities at a blade element in the B frame, then apply

strip theory to obtain the 1ift and drag at local blade sec-

tions. After integration along the blade and a transforma-
tion, we get expressions of the aerodynamic forces and
moments of the blade in the hub axis H. The same approach

applies to the tail rotor, the vertical tail and the hori-
zontal tail as well, the only difference is that a little
algebra is wused to treat the delta 3 feedback of the tail
rotor. Only the thrust of the tail rotor is considered in
this work.

The tail rotor and fixed tail surfaces can exXperience
aerodynamic interference effects from many sources. Only the
components of flow from the main rotor are included in this
model. However, the equations are formulated to allow easy
insertion of other components. The total velocity components
for the tail rotor and fixed tail surfaces are made up of

contributions from the basic body axes translational and



L]

24
angular velocities and rotor wash. Dynamic pressure loss is
introduced by factoring the components of the free stream
flow. The actual total ciynamic pressure is calculated from
the resultant velocity at tail rotor and fixed tail surfac-
es. This allows a more representative definition of dynamic
pressure at low speeds where the downwash velocities predom-
inates.

Then the total virtual work due to the aerodynamic forces
is expressed as a function of the generalized coordinates by
summarizing all virtual work done by each aerodynamic force
or moment, in which extreme care must be exercised. because
any inconsistency with the corresponding inertia term will
result in large errors at final dynamic equations after the
linearization. Taking required differentiations, we get the

generalized forces for the equations of motion.

2.7 Dynamic Inflow

The rotor blade operates in an unsteady environment; con-
sequently unsteady aerodvnamics can have a significant
influence on the aerocelastic and aeromechanical stability
characteristics of helicorters. To describe the 1low fre-
quency unsteady aerodynamic behaviour of the rotor, there
are relatively simple unsteady aerodynamic models, known as
inflow models, which agree with experiment and can be con-
veniently incorporated ir aeromechanical and aeroelastic

stability and control analyses of helicopters. These sim-
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ple models are based upon the definition of certain inflow
parameters which represent essentially the unsteady wake-
induced flow through the rotor disk.

The induced flow-field acting on a helicopter rotor
affects both rotor equilibrium (trim loadings) and rotor
response (transient loadings). Hence, it is reasonable to
expect that the induced flcw will also be affected by the
oscillations of the rotor. Following this assumption, the
inflow is written as a comkination of a steady inflow for
trim loadings and a dynamic perturbation for transient load-
ings. Then, the total induced velocity normal to the rotor

disk is expressed as

- \/ \I - _+ 4 ‘-; ; :
vn no oLt) \C(t, cosy + VS(t) siny (1)
where v , vy , and vy are components of the dynamic
< c s
inflow perturbation. Thie cynamic inflow components can be

related to the perturbed thrust AF, the perturbed pitch and
roll moments AM |, AMX. The equations are written in form

y ,

[L] [M] <V'> + <V> = [L] [D] <AF> (2)

where <V>7= (V,V¥ ,V ] and <AF>T= [AT, AM , AM )

o” "¢’ s y x

The matrix [L] is the static coupling matrix between

induced velocity and aerocynamic loads, the matrix [M]
assumes the role of an inertia of the air mass, the product
of [L][M] is a matrix of time constants, and the matrix [D]
is a dimension adjustor.

A number of such inflow niodels are available in the lit-

erature. In this work, the steady inflow is obtained
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from momentum theory for hover and from classical wvortex
theory for forward flight. 1t has a first harmonic distri-
bution as a function of wake skew angle. The dynamic model,
i.e. the [M], [L), and [D] matrices, come from Pitt's model
pased on a rigorous solutior to actuator-disk theory. The
details of the model can be found in Ref.Z21l.

There is no simple method available to include the
effects of the unsteady wake of the rotor on the tail rotor
and horizontal tail. Cons:dering the dynamic inflow models
represent the global effects of the unsteady wake, the
effects of the unsteady wake on the horizontal tail and the
tail rotor are included by directly extending the dynamic
inflow components out of the rotor plane, which is done by
assuming that the dynamic inflow at tail rotor and tail sur-

faces are of two times of the value on the line xf:R,
2

zfzso.

2.8 Linearization

The nonlinear equations of motion are of the form:
Q" = F(Q, Q', U, T) (3)
Introducing multiblade coordinates, which transforms the
blade-fixed generalized cocrdinates to nonrotating hub-fixed
generalized coordinates, and omitting periodic higher har-
monic terms, a constant coefficient approximation to the
original periodic system is obtained:

Q" = F( Q. @', U) (4)
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The process of linearization consists of expressing the
time dependence of the generalized coordinates and inputs as
the sum of the steady-state value and the time-dependent
perturbation about the former.
Q) =0;, + 40Q,CL (3)
UiCt) = Uio + AQi(t) (6)

Equations (5) and (6) are substituted into the nonlinear
equations of motion, and terms containing squares of the
perturbation gquantities are neglected. The perturbation
quantities are set equal t¢ zero to obtain the steady-state
values of the generalized coordinates and the control inputs
in the trim condition.

FC Q,UD =0 >> Q Yy (7)

The final form of the cynamic equations can be symboli-

cally written as
MCQO,Uo)AQ“+CCQ0,U0)AQ'+K(QO,UO)AQ=BCQ°,UO)AU(8)

This linear time-invaring system can be written in first

order form:
X' =AX +BU (9)
X and U are the state variables and control input vector:

X =1 BO,BKIE,CO.CI.(Z.Q,-¢,-w,y,x,z
BB 3L .0 .0 ,6,-¢, -y, y, %, 2, Vo, Ve, ¥s1 T
U = [ Aie,Bis, 0117
The collective pitch angle of the main rotor is not
included in the control vector of the perturbation equations

because collective input were not investigated.



Chapter III
INFLUENCE OF THE ROTOR WAKE ON THE TAIL ROTOR

AND FIXED TAIL SURFACES

3.1 Introduction

It has been found fror wind tunnel tests that the rotor
wake influences the aerocynamics of the tail rotor in for-
ward flight [22] and that the effect of rotor wake on the
horizontal tail produces a significant contribution to yaw
pitch coupling [23], which arises because of the angle of
attack distribution across the span of the horizontal tail.
The angle of attack can vary by as much as 10 degrees from
one tip to the other.

In this work it has been found that the transient
response in forward flight. especially the pitch response,
is very sensitive to the :reatment of the influence of the
rotor wake on the vertical tail, the horizontal tail, and
the tail rotor. A simple “heory based on a flat vortex wake
model has been employed to obtain estimates of vertical var-
iation of the sidewash at the tail rotor and vertical tail
and the horizontal variat:on of the nonuniform downwash at
the horizontal tail. The mathematical details of the wake
model used in this work are discussed in Ref.24 and are also
given in Appendix C. Only a brief description is given
here.

- 28 -
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3.2 Theory of Lifting Airscrews with a Flat Vortex System

The flat vortex wake model is based upon the following
assumptions:

(1) The vortex wake formed by free vortices leaving the
rotor blades moves downstream without any downward motion.
This should be a good aprroximation for helicopters with
sufficiently high flight sreeds. Experience and theoretical
considerations indicate trat this assumption is reasonable
for a considerable range of flight speeds of helicop-
ters. [25]

(2) The intensity of the free vortices leaving the same
section of the blade at wvarious azimuth angles is constant.
This means that an average value of the circulation at a
given radius r of the blade is used to replace the time var-
ying circulation value, which depends on the azimuth angle.

(3) The free vortices in the rotor wake form a continuous
surface of vorticity. This is due to the fact that for most
helicopters the cruise tip speed is at least 2.5 times high-
er than the velocity of flight, and the rotor has 3 or 4
blades so that the density of free vortices would be high
enough to be considered as a continuous surface.

Under these three assumptions, consider a free vortex
layer which springs from th: blade at a given radius r with
a constant circulation. One can find, after some simple
mathematical derivation, th= final vorticity surface is con-

sisted by a lateral wvorticity surface within a circle of
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radius r and centred at hub, and a longitudinal vorticity
surface which coincides with the whole wake surface. The
circulation per unit length of the lateral vortex layer is a
constant, which is proportional to the intensity of the free
vortex layer, and inversely proportional to the advance
ratio and rotor radius. The circulation per unit length of
the longitudinal vortex layer is a function of lateral posi-
tion y, which is also proportional to the intensity of the
free vortex layer, and inversely proportional to the advance
ratio and rotor radius. Then under the assumption that the
circulation distribution along the rotor radius, averaged
over the azimuth, is parabolic, the distribution of vortex
strength can be determin:d and the induced velocity at any
point in space can be calculated by applying the Biot-Savart
law, and integrating ove: the whole blade. This model pro-

duces lateral and vertica: components of the induced veloci-

ty.

3.3 Influence of the Rotor wake on the Tail Surfaces

To estimate the influence of the rotor wake on the tail
rotor and fixed tail surfaces, it is assumed that the down-
wash and sidewash distributions in the trim condition are
given by distributions calculated relative to the centerline
of the wake at X = R. Pertarbations in sideslip and angle of
attack cause the centerlin= to move changing the correspond-

ing aerodynamic forces and the moments.
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The vertical induced velocity contribution in the plane
of the rotor disk due to the lateral vortices is physically
equivalent to the fore and aft variation produced by the
classical vortex theory, and the average induced velocity
due to the longitudinal vortices is equivalent to the uni-
form part from the classical vortex theory. These contribu-
tions are obtained by directly extending the classical vor-
tex results out the rotor plane to the required location.
The variable part of the vertical induced velocity contribu-
tion due to the lateral vortices is symmetric with respect
to the vertical plane, as a result its first order variation
in the lateral direction will be zZero. In addition, the
lateral vortices do not produce a contribution to the later-
al component of the induc:d velocity. Therefore, in this
work only the nonuniform contribution of the longitudinal
vortices is included as follows.

The normalized nonuniform vertical induced velocity dis-
tribution along the latera«l axis at the position of horizon-
tal tail in forward flight with zero sideslip angle at an
advance ratio of 0.22 (10¢ KTS) for UH-60A is shown in Fig.
3-1. The antisymmetric part produces a steady rolling moment
and a pitch moment variation with the sideslip angle. The
symmetric part produces & steady pitch moment and a roll
moment variation with the sideslip angle.

The shape of the distribution explains the phenomena
observed in the wind tunnel test of Ref.23: (1l)the left hand
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panel encounters relative positive rotor induced angles and
the right hand panel encounters negative values, (2)the yaw-
pitch coupling is general.y worse for a nose left slip than
for a nose right slip, (3)the right hand panel produces con-
siderably more coupling tlr.an the left hand panel when tested
separately.

The vertical variatior of the lateral component of the
induced velocity at the tzil rotor in the zero sideslip case
for the same helicopter at the same flight condition at
advance ratio of 0.22 is shown in Fig. 3-2. As a conse-
quence the local angle of attack of the tail rotor and ver-
tical tail will wvary with the angle of attack of the heli-
copter, producing roll and yaw moments. It can be seen that
there is a discontinuity >n the wake, which is due to the
inviscid fluid assumption in the theory and is smoothed out
by taking the viscosity of the airflow into account.
Because the real distribution is unknown and nonlinear, and
the assumption of tail ro:or center located on the surface
of the wake is extremely poor for most flight conditions,
the corresponding derivatives are determined by correlation
with flight test. The derivatives used in this paper are
determined in one trim condition at advance ratio of 0.14
(60 KTS). It has been found that the response prediction is
not sensitive to the value of these derivatives, however the

overall effect is important..
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Although the effects of nonuniform induced velocity are
strong nonlinear functicns of the sideslip and angle of
attack, only the steady contribution and first order varia-
tion of these effects are included. For example, the overall
roll and pitch moment contributions by horizontal tail as
functions of the sideslip angle and their linear approxima-
tions are given in Figs. 3-3 and 3-4 for the helicopter at
the same flight condition as the induced velocities. As can
be seen, these nonlinear effects behave like linear effects
only in a small neighborhood about the equilibrium point.
Therefore, the model is limited to the case of small sides~

lip motion.
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Chapter 1V

VERIFICATION OF THE MODEL

4.1 Introduction

To correlate the model, the transient response of an
articulated rotor helicopter to small step-inputs of each
control at various trim conditions has been‘ calculated and
compared with a large nonlinear model currently used in a
simulator and with flight test data. The flight test
results are obtained by a flight test program solely for the
purpose of validating mathematical models of the helicopter.

The helicopter is a UH-60A Black Hawk, which has a fully
articulated rotor having four blades with lead-lag dampers.
The helicopter configuration, structural and aerodynamic
properties are given in Ref.10. The trim conditions are
hover, 60 KTS level flight, 100 KTS level flight, and 140
KTS level flight. The time histories of the control inputs,
the test conditions, and the transient responses obtained
from flight test and the simnulation are presented in Ref.18.

The trim values and the initial control settings used in
the simulation are directly obtained from flight test data.
After trimming to the test conditions, the time-histories of

the perturbed input, which are the differences between the

time-histories of test-aircraft control and its initial con-
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trol positions, were used as direct input to the simulation.
In this way, the simulation begins each transient response
in the actual trim condition; therefore, the trim errors
have a minimal influence o5n dynamic response comparisons.
All simulation performed ia this work used a time step of
0.05 sec. The simulation oatput was recorded every 0.15 sec
to reduce the cost of plotting.

The calculated response time-histories are compared to
flight test data for small control inputs in Figs. 4-=1 to
4-27. Correlations are discussed in terms of the fuselage
angular rate response since their gquantities are of primary
interest in handling qualities. Calculated results from
models both with and without dynamic inflow are presented in
hover so as to illustrate the role of dynamic inflow in
response prediction. In forward flight, a third model, the
model including not only dynamic inflow but also the effect
of the rotor wake on the fixed tail surfaces and tail rotor,

is added.

4.2 Hover

Figs. 4-1, 4-2 and 4-3 present the roll, pitch and yaw
rate responses of UH-60A at hover to a 1l-inch right cyclic
input, compared to flight test data of Ref.18. The results
obtained from this simulation including dynamic inflow
produce very good agreement with the flight test data, and

also represent an improvement over the nonlinear simulation
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model of Ref.18. For the on-axis response, the addition of
dynamic inflow gives a significant improvement in the agree-
ment between experiment and theory. The roll rate response
to the right «cyclic input almost coincides with the flight
test data and reduces the error in the prediction of the
roll rate peak to zero from 25% for the model without dynam-
ic inflow. The nonlinear simulation indicates about 40%
error in this important claracteristic([18]. For the off-
axis response, the calculzted results are also quite close
to the flight test data, &lthough dynamic inflow has little
influence on these responses. It is of interest .to note
that even though this is an articulated rotor helicopter,
dynamic inflow has a significant influence on the response.

Figs. 4-4, 4-5 and 4-£ present the pitch, roll and yaw
rate responses of UH-60A at hover to 0.5-inch forward cyclic
input. Although for the on-axis response, the model includ-
ing dynamic inflow gives a significant improvement, the
agreement in pitch rate response to the forward cyclic input
is not as good as in the lateral case. This discrepancy
implies that the effective pitch damping is under-estimated,
tending to indicate that there is a significant additional
source of damping not accouanted for in the theory probably
due to the rotor wake horizontal tail interaction since the
good agreement for the lateral axis shows that the rotor
damping contribution is accurately estimated. For the off-

axis response, the calculated results are close to the
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flight test data, and as for the lateral input, dynamic
inflow does not give a significant change.

Figs. 4-7, 4-8 and 4-9 present the responses at hover to
l-inch left pedal input. The initial yaw acceleration is
under-estimated, and the roll rate response is close to the
flight test result. The pizch rate response is quite differ-
ent from the flight test result, again indicating a rotor-
tail interaction.

For each control input. the dynamic inflow has little
effect on the vyaw rate response because the dynamic inflow
is related only to downward inflow components. In addition,
because of pilot difficulty in maintaining trim of the
unaugmented aircraft, in nany cases flight test data drifts
from trim before the control input, causing differences
between the test data and the simulation responses, espe-
cially in the small amplitude off axis responses. This can
be clearly seen in Fig. 4-6, in which the control input
starts at 2.4 seconds; however at that time the vyaw rate
response has drifted away a little more than 1 deg./sec,
which is almost eqgual to the difference between the flight
test and the simulation for the simulation period.

Generally speaking, the agreements obtained for the lat-
eral and directional respoases by including dynamic inflow
are quite satisfactory. However the longitudinal responses
are not so good. The likely source of this discrepancy is

the interaction of the rotor wake with the large horizontal
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tail, which is difficult fo estimate due to lack of experi-
mental data. Even so, the longitudinal responses calculated

show better agreement than the nonlinear model of Ref.18.

4.3 Forward Flight

Figs. 4-10, 4-11 and 4-]12 present the pitch, yaw and roll
rate responses of the UH-60A at 60 KTS level flight to
0.5-inch right pedal input. The traces of Fig. 4-11 show
that the yaw rate responses, the on-axis response, obtained
by the models without dynamic inflow and with only dynamic
inflow predict a larger pezk yaw rate and a higher damping.
Including the effect of the rotor wake on the tail surfaces
improves the correlation producing excellent agreement. In
Fig. 4-10, the predicted pitch rate responses with and with-
out dynamic inflow depart from the flight test data to the
same degree as the nonlinear simulation. Considerable
improvement in the agreement is obtained by including the
effect of the rotor wake. The improvement arises primarily
from the addition of yaw pitch coupling due to nonuniform
downwash at the horizontal tail. The roll rate response is
shown in Fig. 4-12. The main rotor wake has a significant
effect on the response; hcwever this simulation predicts a
significantly larger roll coupling. The initial roll accel-
eration due to application of rudder is over-estimated by
the theory, resulting in a larger amplitude roll rate

response. In this case, the model including the effect of
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the rotor wake indicates excellent performance by predicting
the yaw-pitch coupling. Dynamic inflow has less effect at
this translational flight condition than in hover.

Figs. 4-13, 4-14 and 4-15 show the roll, pitch and yaw
rate responses to 1-inch left cyclic input. The roll rate
response, the on-axis response in this case, shows very good
agreement for the initial roll rate with some drift away
with time. Note that for the pitch response, the model with-
out dynamic inflow does not give the right direction for the
response. Adding the dynamic inflow reverses the sign of
the response and including the influence of the rotor wake
gives a response very close to the flight test. For the yaw
rate response, although all three are close to the flight
test data, the model including the influence of the rotor
wake shows no improvement over others. However, the shape
of these traces suggests that trim drift may be present in
the flight test as mentioned earlier. Therefore, generally
speaking, the correlaticn between theory and experiment
including the influence of the rotor wake still is much bet-
ter in this case; it not only gives a correct pitch rate
response by taking the yaw pitch coupling into account, but
also gives a improvement in roll rate correlation.

Figs. 4-16, 4-17 and 4-18 show the angular rate responses
at 100 KTS level flight to 1l-inch forward cyclic input. Once
again the pitch rate responses, the on-axis response,

obtained by the models with and without dynamic inflow drift
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away from the flight test data. The effect of dynamic
inflow is quite small at this airspeed. Considerably
improved correlation of pitch rate is obtained by including
the effect of the rotor wake. It has a similar shape to the
flight test data, which has two peaks instead of one. For
the yaw rate response, the model including the influence of
the rotor wake presents a better shape but still an over-
shoot, which is believed due to the lack of the dynamic
inflow modelling for the tail rotor. The overshoot of yaw
rate response, through the yaw roll coupling by the horizon-
tal tail caused by the nonuniform downwash, results in a
small wrong positive roll rate response. Even so, it is
still reasonable to say thaz the model including the effect
of the rotor wake is better because it can predict the sec-
ond peak in the primary response.

Figs. 4-19, 4-20 and 4-21 present responses of UH-60A at
100 KTS level flight to 1l-inch right pedal input. The
traces of Fig. 4-20 show that for the yaw rate response, the
on-axis response, the models without the effect of the main
rotor wake show poor agreement after the first peak. After
3.5 seconds, both of the responses drift away from the
flight test data, there is an error in dominant frequency.
Including the influence of the rotor wake gives a much bet-
ter agreement with flight test data for the 6 second test
period. In Fig. 4-19, once again the pitch rate response

which shows best agreement to the flight test data comes
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from the model including the effect of the rotor wake on the
tails and tail rotor. The same improvement also can be seen
at Fig. 4-21 for the roll rate response, but again as in the
60 KTS case the initial roll acceleration due to pedal input
is over-estimated by about a factor of two. A similar dis-
crepancy appears in the nonlinear simulation model of
Ref.18.

Figs. 4-22, 4-23 and 4-24 show the responses of UH-60A at
140 KTS level flight to 1l-inch lateral cyclic input. In this
case, the responses obtained by all three models show very
good agreement with the flight test data, the model.includ-
ing the influence of the rotor wake produces only a little
improvement in long term trends.

Figs. 4-25, 4-26 and 4-27 give the responses of UH-60A at
140 KTS level flight to 0.5-inch doublet pedal input. The
traces of Fig. 4-25 show that the yaw rate responses, the
on-axis response, obtaired by all models are very close to
the flight test. In this case, the improvement including the
effect of the rotor wake 1is significant for both Yyaw and
pitch rate. The roll rate responses are shown in Fig. 4-27,
and again the roll acceleration due to pedal input is over-
estimated by this model.

1t should be pointed out that in these six forward
flight cases the variations of the sideslip angle are all
within 15 degrees, and the reason for only one longitudinal

input case being chosen is that the longitudinal inputs usu-
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ally result in a significant variation of rotor speed, which
is not included in this model.

Generally speaking, the calculated results are close or
very close to the flight test data for all three models used
in the correlation study. The on-axis directional responses
to the pedal input show excellent agreement with flight test
data for all three models, although taking the effect of the
rotor wake on the tail rotcr and fixed tails into account is
still beneficial. The lcongitudinal off-axis response to
pedal input is strongly influenced by the effect of the main
rotor wake on the tail rotor and fixed tails. The models
without the effect of the rotor wake give the similar dis-
crepancies as the nonlinear model used in Ref.18. The model
including the effect of the rotor wake gives significant
improvement and shows excellent agreement with flight test
data, especially at low speed. In general the roll acceler-
ation due to pedal input is over-estimated at all airspeeds.
The agreement is reasonable only in hover but in this case
the yaw acceleration is under-estimated. The reason for this
discrepancy is not clear. A possible source of error could
be the estimation of the inertial characteristics of the
vehicle. The on-axis lateral response and off-axis direc-
tional response to lateral cyclic input show very good
agreement with the flight test data for all of three models.
The model including the effect of rotor wake shows a little

improvement in long term trends. The off-axis longitudinal



55
response to lateral cyclic input is also strongly influenced
by the main rotor wake, the model including this effect
WOorks quite well, offering noticeable improvement. As for
the longitudinal input, if there is not much variation in
the main rotor speed, the models show good agreement with
flight test data as well.

The pitch-yaw coupling mentioned in Ref.23 is estimated
by the flat vortex model of the rotor wake at moderate
speeds and at high speeds. The estimate of vyaw-roll
coupling is not so obvious because the roll rate responses
due to pedal input are not satisfactory. 1In contrast to the
hover cases, the additicn of dynamic inflow has a small
effect in both moderate speed and high speed flight.

Finally, to 1illustrate the nonlinear nature of the
coupled rotor/fuselage system and the nonlinear nature of
the influence of the rotor wake on the tail rotor and fixed
tails, transient responses of the helicopter for two moder-
ate l-inch pedal inputs at 100 KTS are calculated. The var-
iations of sideslip angle in two cases are all 20 degrees.
The yaw rate, pitch rate, and roll rate responses are pre-
sented in Figs. 4-28, 4-29, and 4-30 for the right pedal
input and in Figs. 4-31, 4-32 and 4-33 for the left pedal
input. For both cases, +the sideslip angle reached 15 deg.
at the fourth second([18]. Before that time the model includ-
ing the influence of the rotor wake gives very good respon-

ses for all three rates. After that, the yaw-pitch coupling
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and the yaw-roll coupling are overestimated as expected.
For the left pedal input, the overestimation mainly happenes
in pitch rate response, and for the right pedal, the roll
rate has the largest overshoot in all three over responses.
Consequently it is concluded that the linearized approxima-
tion to the nonuniform down wash and sidewash at tails is
not valid when the sideslip angle variation is larger than
15 degrees.

On the other hand, it should be noticed that all three
responses obtained by the models without considering the
influence of the rotor wake have the same accuracy and simi-
lar shape or trend with the nonlinear dynamic model used in
Ref.18. Therefore, it seems that even under moderate control
inputs, the simulation deficiencies still mainly are results
of insufficient modelling of the rotor/tail interaction, and
have little to do with the small perturbation assumption
under which the system it linearized aﬁd the approximation

by replacing the periodic term with its time average.

4.4 Conclusions

From the correlation results given in the last section,
it is clear that the linearized model of helicopter dynamics
developed in this work is a good description for helicopter
free-flight dynamic characteristics in both hover and trans-
lational flight trim conditions. The flight test data con-
firmed the analytic predictions with excellent accuracy for

small inputs.
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The comparison of the transient responses with flight
test data shows that in hover the effects of dynamic inflow
are significant and can be correctly taken into account by
momentum theory, and that the inclusion of dynamic inflow is
not important as expected in forward flight. The rough
agreement of the transient responses between the models
without considering rotor tail interaction in this work and
the nonlinear simulation model used in Ref.18 for small and
moderate control suggested that for the flight dynamical
analysis the coupled rotor/fuselage system still can be con-
sidered as linear time invariant in a wide range of flight
conditions. The significant improvement obtained by the mod-
el including the influence of the rotor/tail interaction
suggested that for forward flight the sidewash variation at
tail rotor and vertical tail and the nonuniform downwash at
horizontal tail are more important for flight dynamic analy-
sis than the inertia nonlinear coupling, the mechanical non-
linearities associated with moderate elastic deflections,
the servo dynamics, the effects of sweep, the compressibili-
ty, and the nonlinear lag damping, all of them are included
in the nonlinear simulator model. Therefore, the inclusion
of the static influences of the rotar wake on the tail rotor
and fixed tail surfaces are very important and may be the
most important factor for forward flight dynamical analyses
after the basic configuration modelling. It also has been

shown from the comparison that the simple linear flat vortex
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theory employed here is a good description of the phenomenon
and its linearized approxXximation can be used in a wide range

of flight speed for small control inputs.



Chapter V
INFLUENCE OF THE BLADE DYNAMICS ON THE FEEDBACK

CONTROL SYSTEM DESIGN

5.1 Introduction

In the design of high-gzin control systems for the heli-
copter, it is essential to consider the influences of the
blade dynamics. Although it has been recognized for quite
some time that the flapping dynamics of an articulated rotor
system imposes limitations in the design of automatic con-
trol systems for rotorcraft, and a significant amount of
analytical research has been performed to investigate their
impact on the design of automatic control systems, only a
limited number of studies take the lag degrees of freedom
into account. Furthermore, all investigations to date are
based on incomplete system modelling under assumptions that
yaw motion and vertical motion of the helicopter are uncou-
pled, the fuselage center of gravity is on the shaft, and
the effects of the tail rotor are not included. In Ref.26,
R.T.N.Chen and W.S.Hindson investigated the 1limitations in
control gain encountered when flapping dynamics are included
and presented experimental verification of these trends. 1In
Ref.5, H.C.Curtiss investigated the high frequency charac-

teristics of the transfer functions describing the response

- 61 -
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of helicopters associated with the rotor degrees of freedom
including the lag degrees o>f freedom and examined the impact
of those on the design of automatic control systems in hov-
er. The results showed that if the simple roll attitudé or
roll rate feedback is employed on the helicopter model with
rotor dynamics neglected, <there is no gain limitation. For
a model including flapping dynamics, there will be limita-
tions for roll rate feedback due to the effect of the feed-
back on the regressing flap mode, and for the roll attitude
feedback due to the effect of the feedback on the advancing
flap mode. When both flapping and lagging dynamics are
included in the model, the maximum allowable gain of the
roll rate feedback is much smaller, and the corresponding
unstable mode is advancing lag instead[5]. This study
extends these results by an analysis on a complete system
model described in Chapter 3 which includes all the low fre-
guency degrees of freedom, the effects of center of gravity
location, the effects of the tail rotor and fixed tail sur=-
faces, and the unsteady aerodynamics through dynamic inflow
modelling, for forward flight trim conditions as well as
hover.

Due to the multivariable nature of the helicopter sys-
tem, 1linear optimal regulator theory has also been used to
design stability augmentation systems for helicopters.
Although successful flight control systems[27,28] have been

designed by optimal control procedures based on conventional
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quasi-static stability derivative models. These studies are
limited to helicopters that have relatively high fuselage
inertia and small hinge offset. Therefore the rotor-body
coupling is small. And these designs do not reflect the more
demanding bandwidth requirement for very agile rotorcraft.
Attempts to design a model-following flight control system
for a hingeless rotor helicopter to achieve moderately high
bandwidths have worked wel: in ground-based simulation, but
have been 1less successful in flight[29,30]. Since the
ground-based simulation, which is based on a stability
derivative model, and flight results do not agree, it must
be assumed that better models of such rotor-system dynamics
are required. Several investigators have shown that for the
application of the linear ¢ptimal regulator theory to high-
gain, full-authority contrcller, the inclusion of the flap-~
ping dynamics is essential. In particular, Miyajima has
found that the blade regressing flap mode should be included
in the stability and control augmentation system design(4}.
Hall has shown that if an optimal control system devised
based on the quasi-static flapping assumption is applied to
a model with flap dynamics included, instabilities
result{6]. This study extends previous studies b& examining
the closed-loop responses of the model including both flap
and lag when the controller design is based on a model which
includes only flapping dynamics, and the closed~loop con-

troller is designed by standard and frequency-shaped per-



64
formance indexes. The latter is shown to be very effective
for eliminating the destabilizing effect of unmodelled
dynamics. It has been found that in addition to rotor dyna-
mics, the sensor dynamics, the actuator dynamics, and the
transport delay associated with the digital implementation
also can severely 1limit the usable values of feedback
gain[26]. One investigation[31] has found that the simula-
tion of the feedback controller design based on the semi-
empirical stability derivative model shows an instability
due to interaction between actuator dynamics and sensor
dynamics. However, these open-loop modes have higher damping
and frequency than the rotor lag dynamics. Therefore, it
seems more reasonable to include the lag dynamics in the
basic model before examining the destabilizing effects of
the actuator and sensor dynamics. For the requirement of
better modelling, some semi-empirical models are obtained by
numerically adjusting time constants, damping factors, and
natural frequencies in an assumed model-structure untill the
frequency response of the model matched flight test data
[32]. This approach may be useful in the design of feedback
control system for a specific aircraft, but it can not pro-
vide the physical insight to the helicopter designer for im-
proving the basic configuration design for next step in the
development. Furthermore, a series of simplified control-
lers are developed through successive reduction in the num-

ber of feedback loops while using the feedback gain factors
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obtained for the optimal control, which makes it possible to
reduce significantly the number of feedback loops required
by optimal control design without any noticable effect on
the overall system dynamics.

All the active control simulations in this study were
performed on a UH-60A Black Hawk helicopter. All the
results use the complete model which includes the dynamic
inflow at hover and both cdynamic inflow and the influences
of rotor wake on the tail rotor and empennage at forward

flight unless noted.

5.2 Simple Feedback Control

Although a variety of output variables are possible
sources of closed loop feedback information for control
actuation, the rotation attitude and rotation rate variables
have been considered to be highly effective for stabilizing
helicopters by some investigations [33,34]), and are most
frequently used in practice. Therefore, both have been cho-
sen as feedback variables.

In this section, the influences of rotor dynamics and
dynamic inflow have been studied by exXxamining the root loci
and the closed loop frequency response characteristics of
the system with simple states feedback. The eigenvalue and
eigenvector analysis has been used to promote physical

insight.
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5.2.1 Attitude feedback at hover
Fig. 5-1 shows the eigenvalues of the helicopter at hov-
er, their numerical values are listed in Table 5-1. It can
been seen that the regressing flap mode, roots 17 and 18,
has moved away from the position directly below the coning
flap, which suggests that it is strongly coupled with the
fuselage modes. Fig. ©5-2 shows the eigenvalues associated
with free-flight stability-and-control-characteristics in
detail. According to eigenvector analysis, the left complex
conjugate pair, roots 17 and 18, represents the mode coupled
by regressing flap and body roll motion. The two right com-
plex conjugate pairs near each other, roots 22, 23 and 24,
25, represent modes having coupled pitch and longitudinal
velocity, and coupled ro.l and lateral velocity, the two
so-called longitudinal and lateral phugoid modes. Four zero
roots, roots 1, 2, 3, and 27, are associated with vertical,
lateral, longitudinal and yaw position each. The root 27 is
not exactly zero due to a lack of complete cancellation of
terms, and should be a zero if the equations are derived
explicitly for the coupled system. The smallest negative
real root near zero, root 26, is associated with yaw damp-
ing, and the one next to it, root 21, is associated with the
vertical damping; the left two roots, roots 19 and 20, rep-
resent the modes coupling body pitch and regressing flap.
All of them are coupled together through the canted tail

rotor.
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The root loci of the helicopter with roll attitude feed-
back with in a range from zero to 1.5 Deg/Deg are shown in
Fig. 5-3. The modes shown in the figure are those locations
that are significantly affected by the feedback. Those
include the body roll/regressing flap, roll/lateral velocity
and yaw damping. The longitudinal modes, lag modes and con-
ing and advancing flap modes are hardly affected by the
feedback.

Roll attitude feedback stabilizes the roll/lateral veloc-
ity mode very effectively at low gain, and makes it over-
damped at gain K = 0.12. This will improve the helicopter
lateral dynamic characteraistics because the roll/lateral
velocity mode dominates the low frequency lateral dynamics.

However, the body roll/regressing flap mode is destabi-
lized and finally becomes unstable at feedback gain a little
higher than critical gain I = 1.0 Deg/Deg, which has been
predicted to be the theoretical feedback 1limitation by a
simple model used in Ref.5. This is physically reasonable
because the model here inc.ud extra damping contributed by
the tail rotor. The roll attitude feedback destabilizes the
yaw damping mode as well, implying there 1is a sizeable
coupling between the lateral and directional dynamics at
hover.

The pole-zero locations of open-loop roll angle to lat-
eral cyclic transfer function at hover were also calculated.

The results are shown in Table 5-1. As can be seen, the
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POLES Z2EROS
1 0.0000E+0Q0 0.0000E~00O
2 0.0000E+00 0.0000E~00
3 0.0000E+00 0.0000E~-00 -0.3843E+01 0.1179E+03
4 -0.9427E+01 0.5229E~-02 -0.3843E+01 -0.1179E+03
- 5 -0.9427E+01 -0.5229E-02 0.2413E+01 0.5588E+02
6 -0.1973E+01 0.3974E-+02 0.2413E+01 -0.5588E+02
7 -0.1973E+01 =-0.3974E+02 -0.8447E+01 0.2545E+02
8 -0.8447E+01 0.2545E+02 -0.8447E+01 =-0.2545E+02
9 -0.8447E+01 =0.2545E+02 -0.2617E+02 0.0000E+00O
10 -0.2375E+02 0.2171E+01 ~-0.1960E+02 0.0000E+00
- 11 ~-0.2375E+02 =0.2171E+01 ~-0.2258E+02 0.0000E+00
12 -0.1275E+01 0.1791E+02 0.1474E+01 0.1739E+02
13 -0.1275E+01 -0.1791E+02 0.1474E+01 =~0.1739E+02
14 -0.1960E+02 0.0000E+0O0 ~-0.2011E+01 0.7574E+01
15 ~-0.2028E+01 0.7586E+01 -0.2011E+01 =0.7574E+01
16 -0.2028E+01 =0.7586E+01 -0.1149E+02 0.0000E+00
- 17 -0.3258E+01 0.4257E+01 ~0.4905E+01 0.0000E+00O
18 -0.3258E+01 =-0.4257E+01 -0.1026E+01 0.0000E+00O
19 -0.4847E+01 0.0000E~+0O -0.5178E+00 0.0000E+00
20 -0.1065E+01 0.0000E+0Q0O 0.6182E-01 0.2928E+00
21 -0.5168E+0C0 0.0000E+00 0.6182E-01 =-0.2928E+00
22 -0.8410E-02 0.4062E+00 -0.2112E+00 0.0000E+00
- 23 -0.8410E-02 =0.4062E+00 -0.3537E-02 0.0000E+00
24 0.5203E-01 0.2813E+00 0.1961E-05 0.0000E+00
25 0.5203E-01 =-0.2813E+00 -0.5199E-10 0.0000E+00
26 ~-0.1380E+00 0.0000E+00 -0.1342E-12 0.0000E+Q0O
27 0.5839E-06 0.000CE+0O0 0.1893E-11 0.0000E+00
APPROXIMATE TRANSFER FUNCTION

Roll(s) 2.057(S+0.003537) ('S+0.2212)
- Als(s) (S+0.138)(S+0.00841+3j0.4062) (S+0.00841-30.4062)
(S+11.49)
(S+3.258+3j4.257)(S+3.258-3j4.257)
TABLE 5-1 Poles, Zeros and Approximate Transfer Function

of Lateral Helicopter Dynamics at Hover
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longitudinal low frequency poles have very close =zeros and
hence will be canceled in the overall transfer function.
The low-frequency modes remaining after the cancellation
will be the body roll/regressing flap, the roll/lateral
velocity and the yaw dampirg. In Table 5-1, a reduced-order
approximate transfer function consisting of the remaining
low-frequency modes is alsc presented. From the frequency
response of the helicopter roll attitude to the lateral
cyclic input with roll attitude feedback shown in Fig. 5-4,
it can be clearly seen there are significant improvements by
both reducing the resonance ratio of the system and increas-
ing the bandwidth in the FEode amplitude characteristics and
by reducing the phase shift in the phase characteristics.
Due to the presence of several nonminimum phase poles and
zeros, the standard interpretation of gain margin and phase
margin is not valid here, and there 1is a phase lead at low
frequencies. In addition, the root loci using the approxi-
mate transfer function with same feedback will coincide with
the root loci shown in Fig. 5-3. This implies that the roll
response is primarily determined by the lateral modes of
fuselage and the mode of regressing flap and is coupled with
the mode of directional damping. The cross coupling from
longitudinal dynamics to the roll attitude response 1is one
order smaller.

The longitudinal root loci of the helicopter with pitch

attitude feedback 1in the same gain range is shown in Fig.
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5-5. The modes shown in the figure are those whose loca-
tions in the complex plane are significantly affected by the
feedback. They include the body pitch/regressing flap, the
pitch/longitudinal velocity and the yaw damping modes. In
addition, the damping ratio of the roll/lateral velocity
mode is also significantly changed by the pitch attitude
feedback, from -0.18 at K=0.0 Deg/Deg to 0.0132 at K=1.5
Deg/Deg, although this variation of the damping is too small
to be shown in the root loci map. The pitch attitude feed-
back stabilizes the longitudinal oscillatory mode at gain
K<0.15 Deg/Deg; destabilizes it thereafter; makes it unsta-
ble about K=1.4 Deg/Deg; and increases the oscillatory fre-
quency quite rapidly. The flapping velocity component in
the corresponding eigenvector is increased rapidly with the
feedback, suggesting that the feedback limitation physically
results from the coupling with the flapping dynamics. The
pitch attitude feedback de:creases the damping of the right
body pitch/regressing flap mode and increases the damping of
the left one.

The pole-zero locations of open-loop pitch angle to
longitudinal cyclic transfer function at hover are presented
in Table 5-2. For this case, only the vertical damping and
regressing lag have a very close zero, hence will be can-
celed in the overall transfer function. Therefore the sim-
plified transfer function, presented in the table, is much

more involved. This implies that the pitch response of the
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POLES ZEROS

1 0.0O0OCOE+00 0.00003+00
2 0.0000E+00 0.0000=+C0
3 0.0000E+00 C.0000E+00 -0.9378E+00 0.1239E+03
4 -0.9427E+01 0.5229E+02 -0.9378E+00 -0.1239E+03
5 -0.9427E+01 =-0.5229E+02 0.1431E+01 0.5591E+02
6 -0.1973E+01 0.3974E+02 0.1431E+01 =-0.5591E+02
7 -0.1973E+01 ~0.3974535+02 -0.8453E+01 0.2543E+02
8 -0.8447E+01 0.25455+402 -0.8453E+01 =-0.2543E+02
9 -0.8447E+01 ~0.2545E+02 -0.2609E+02 0.0000E+00
10 -0.2375E+02 0.2171E+01 -0.2254E+02 0.0000E+00
11 -0.2375E+02 -0.2171E+01 -0.1960E+02 0.0000E+00
12 -0.1275E+01 0.1721E+02 0.1485E+01 0.1694E+02
13 -0.1275E+01 -0.1791E+02 0.1485E+01 =-0.1694E+02
14 -0.1860E+02 0.0000E+00 -0.1148E+02 0.0000E+00
15 -0.2028E+01 0.7586E+01 -0.2025E+01 0.7583E+01
16 -0.2028E+01 ~0.7586E+01 -0.2025E+01 =-0.7593E+01
17 -0.3258E+01 0.4257E+01 -0.1189E+01 0.4844E+01
18 -0.3258E+01 =-0.4257E+01 -0.1189E+01 =-0.4844E+01
19 -0.4947E+01 0.0000E+00 -0.3728E+01 0.0000E+00
20 -0.1065E+01 0.0000E+00 -0.5275E+00 0.0000E+00
21 -0.5168E+00 0.0000E+00 -0.2315E+00 0.0000E+00
22 -0.8410E-02 0.4062E+00 -0.3231E-01 0.0000E+0Q0
23 -0.8410E-02 <-0.4062E+00 -0.2872E-02 0.0000E+00
24 0.5203E-01 0.2813E+00 0.9957E-06 O0.0000E+00
25 0.5203E-01 =~0.2813E+00 -0.4581E-10 0.0000E+00
26 -0.1380E+00 0.0000E+00 0.2050E-11 0.0OO000E+00
27 0.5839E-06 0.0000E+00 -0.2433E-11 0.0000E+00

OiiGINAL PACT 1S

APPROXIMATE TRANSFER FUNCTION

Pitch(s) -0.2954(S+0.002872)

(S-0.05203+3j0.2813)(S-0.05203-j0.2813)

(S+0.03231)(£+0.2315) (S+3.728)

(S+0.00841-30.4062) (5+0.00841+30.4062) (S+0.138) (S+1.065)

(S+1.189-j4.&844)(S+1.189+j4.844)

(S+3.258-34.257)(S+3.258+j4.257)(S+4.947)

TABLE 5-2 Poles, Zeros and Approximate Transfer Function

of Longitudinal Helicopter Dynamics at Hover
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helicopter, which is a key figure for the longitudinal
dynamics, 1is strongly coupled with the lateral and direc-
tional dynamics.

As same as roll attitude feedback control, the yaw damp-
ing mode is destabilized s:gnificantly by the pitch attitude

feedback.

5.2.2 Attitude feedback in forward flight

Fig. 5-6 shows the eigenvalues associated with free
flight stability and contrcl characteristics of the helicop-
ter for forward flight at 60 KTS and 100 KTS; their numeri-
cal values are listed in Tables 5-3 and 5-4. According to
eigenvector analysis, the left complex conjugate pair, roots
17 and 18, represent the mode coupled by regressing flap and
body roll. The complex conjugate pair in the middle, roots
22 and 23, as well as the left real mode, root 19, repre-
sent a short period mode which involves primarily pitch
angle and angle of attack and is strongly coupled with the
regressing flap. The right complex conjugate pair, roots 20
and 21, represent the dutch roll mode which involves prima-
rily the yaw degree of freedom with a number of small trans-
lation velocities; another complex conjugate pair very near
zero, roots 24 and 25, is the spiral coupled with an unreal-
istic yaw mode due to the remainded error mentioned in the
introduction about the disadvantage of the matrix displace-
ment method. This mode is the one that is somewhat inaccu-

rate due to a lack of complete cancellation of terms, and
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POLES ZEROS

1 0.0000E+00 0.0000E+00
2 0.0000E+00 0.0000E+00
3 0.CO000E+00 0.0000x+00 -0.5844E+02 0.9794E+02
4 -0.9359E+01 0.52071E+02 -0.5844E+02 -0.9794E+02
5 -0.G8359E+01 -0.5207E+02 0.7133E+01 0.5395E+02
6 -0.2012E+01 0.3954E+02 0.7133E+01 -0.5395E+02
7 -0.2012E+01 =-0.3954E+02 -0.5050E+02 0.0000E+00
8 ~-0.8313E+01 0.2503E+02 -0.8648E+01 0.2530E+02
9 -0.8313E+01 -0.2503E+02 -0.8648E+01 -0.2530E+02
10 -0.2428E+02 0.7011E+01 0.1648E+01 0.1876E+02
11 -0.2428E+02 =-0.7011E+01 0.1648E+01 -0.1876E+02
12 -0.1177E+01 0.1774E+02 -0.2276E+02 0.0000E+00
13 -0.1177E+01 =0.1774E+02 -0.1571E+02 0.7746E+01
14 -0.1949E+02 0.0000E+00 -0.1571E+02 -0.7746E+01
15 -0.2092E+01 0.7671E+01 -0.1919E+01 0.7638E+01
16 -0.2092E+01 =~0.7671F+01 ~0.1919E+01 =-0.7638E+01
17 -0.4444E+01 0.3883E+01 -0.3892E+01 0.0000E+00
18 -0.4444E+01 -0.3883E+01 -0.8986E+00 0.1125E+01
19 -0.3830E+02 0.0000E+00 -0.8986E+00 -0.1125E+01
20 -0.2137E+00 0.1254E+01 -0.2731E+0Q0 0.1118E+01
21 -0.2137E+00 =-0.1254E+01 -0.2731E+00 =-0.1118E+01
22 -0.9324E+00 0.1083E+01 -C.2916E+00 0.0000E+00
23 -0.9324E+00 -0.1093E+01 0.2168E+00 0.0000E+00
24 0.1490E-01 0.5367E-01 0.2771E=-03 0.0000E+00
25 0.14%0E-01 -0.5367E-01 0.2678E-09 0.0000E+00
26 0.2209E+00 0.0000E+00 0.1802E-12 0.0000E+00
27 -0.3006E+00 0.0000E+00 -0.2330E-12 0.0000E+00

APPROXIMATE TRANSFER FUNCTION

Roll(s) 1.052

Als(s) (S-0.0149+j0.05367)(S—0.0l49-j0.05367)

(S-0.0002771)
(S+4.44-33.88)(S+4.44-33.88)
TABLE 5-3 Poles, Zeros and Approximate Transfer Function

of Lateral Helicopter Dynamics at 60KTS
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Of POOR QUALITY 80
POLES ZEROS

1 0.0000E+00 0.0000E+00
2 0.0000E+00 0.000CE+00
3 O.0000E+00 0.0000E+00 -0.2156E+03 0.0C000E+00
4 -0.9025E+01 0.5194E+02 -0.2047E+02 0.7327E+02
5 -0.9025E+01 -0.5194E+02 -0.2047E+02 -0.7327E+02
6 -0.2083E+01 0.3897z+02 -0.2612E+01 0.5333E+02
7 -0.2083E+01 ~0.3897E+02 -0.2612E+01 -0.5333E+02
8 -0.3312E+02 0.1683E+02 -0.8965E+01 0.249%E+02
9 -0.3312E+02 -0.1683E+02 -0.8965E+01 =-0.2499E+02
10 ~-0.7759E+01 0.2517E+02 -0.2221E+02 0.1608E+02
11 ~0.7759E+01 -0.2517E+02 -0.2221E+02 =~-0.1608E+02
12 -0.2418E+02 0.0000%+00 -0.2660E+02 0.0000E+0Q0
13 -0.1167E+01 0.17385+02 0.1175E+01 0.1937E+02
14 -0.1167E+01 <-0.1738E+02 0.1175E+01 -0.1937E+02
15 -0.2269E+01 0.79141+01 -0.2016E+01 0.7886E+01
16 -0.2269E+01 -0.7914E+01 -0.2016E+01 -0.7886E+01
17 -0.5138E+01 0.4588E+01 -0.4889E+01 0.0000E+00
18 -0.5138E+01 -0.4588E+01 -0.1146E+01 0.1526E+01
19 -0.4890E+01 0.0000E+00 -0.1146E+01 -0.1526E+01
20 -0.3618E+00 0.1440E+01 -0.3%910E+00 0.1312E+01
21 -0.3618E+00 -0.1440E+01 -0.3910E+00 -0.1312E+01
22 -0.1146E+01 0.1503E+01 0.1449E+00 0.0000E+00
23 -0.1146E+01 -0.1503E+01 -0.8595E-01 0.0000E+0Q0
24 0.1137E-01 0.4161E-01 0.1116E-02 0.CO000E+00
25 0.1137E-01 -0.4161E-01 C.8511E-11 0.0000E+00
26 0.1528E+00 0.0000E+00 -0.1040E-10 0.0000E+00
27 -0.9152E-01 0.0000E+00 -0.8388E-12 0.0000E+00Q

APPROXIMATE TRANSFER FUMNCTION

Roll(s) 0.7014

Als(s) (S-0.01137+30.04161)(S-0.01137-§0.04161)

TAELE 5-4 Poles,

(S-0.001116)

(S+5.138-374.588) (S+5.138-4.588)

Zeros and Approximate Transfer Function
of Lateral Helicopter Dynamics at 100KTS
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should be a zero and a real root if the equations are
derived explicitly for the coupled system. Three zero roots,
roots 1, 2, and 3, are associated with vertical, lateral,
longitudinal position each; the two real roots at right rep-
resent the phugoid mode coupled with lateral damping due to
the canted tail rotor.

The root loci of the helicopter dynamics with roll atti-
tude feedback for a gain range from zero to 1.5 Deg/Deg for
60 KTS and 100 KTS forward flight are shown in Fig. 5-7 and
Fig. 5-8. The modes shown in the figures are those signifi-
cantly affected by the feedback, including the body roll/
regressing flap, dutch recll and spiral. It is shown that
the roll attitude feedback stabilizes the spiral mode very
effectively but has very little effect on the dutch roll.
The stabilization of the spiral mode improves the low fre-
qguency characteristics of the helicopter's lateral dynamics.
As can be clearly seen from the frequency responses present-
ed in Figs. 5-9 and 5-10, the feedback reduces the resocnance
ratio of the system, increases the bandwidth in the Bode
amplitude characteristics and reduces the phase shift in the
phase characteristics. It should be noticed that the spiral
mode is unstable without the feedback. The low frequency
response peak shown in the Bode plot is only a measurement
about how close to the imaginary axis of the pole, instead
of the classical magnitude of steady-state response for a

sinusoidal input. This means that the improvement obtained
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by the roll attitude feedbuck is larger than it seems to be
in the frequency responses.

The same as at hover, the roll damping/regressing flap
mode is destabilized and finally becomes unstable at feed-
back gain a little higher than K=1.0 Deg/Deg.

The pole-zero locations of open-loop roll angle to lat-
eral cyclic transfer function at 60KTS and 100KTS are pre-
sented in Tables 5-3 and 5-4. The same as at hover, most
nonlateral low frequency poles have a very close =zero,
therefore will be canceled in the overall transfer function.
Furthermore, even the dutcl roll mode, which traditionly is
strongly coupled with the lateral dynamics, has a close zero
pair, this explains why the roll attitude feedback hardly
affects it's position. Trerefore it is suggested that for
this helicopter, the low frequency roll response to the lat-
eral cyclic input at forwerd flight is only determined by
the roll damping/regressirg flap and spiral modes. The
reduced order approximate transfer functions are also pre-
sented in Tables 5-3 and 5-4. Also, the root loci of the
simplified transfer function with same feedback Qill have
same shapes with those shcwn in Figs. 5-7 and 5-8. This
shows that low frequency lzteral dynamics of the helicopter
at forward flight is well separated from the longitudinal
and directional dynamics but coupled with the flapping

dynamics.
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The longitudinal root 1loci of the helicopter with pitch
attitude feedback in the same gain range is shown in Fig.
5-11 and Fig. 5-12. The modes which are significantly
affected by the feedback are those traditional longitudinal
modes, phugeoid and short period. The phugoid mode is two
real roots, one divergent; and the short period mode is
coupled with the regressiny flap. The less damped spiral
mode which has coupled wita longitudinal velocity is also
affected although it's num2rical variation is too small to
be shown in the figures. Taie pitch attitude feedback stabi-
lizes the phugoid mode as well as the real root of short
period mode but destabilizes the complex pair. The spiral
mode is also destabilized at low gain range and is stabi-
lized after the gain K=0.4 for 60KTS and K=0.11] for 100KTS.
The final feedback 1limitation gain due to the destabilized
short period mode is increased with forward flight velocity
because the stable effect of the horizontal tail on the
longitudinal dynamics is increased with flight velocity.

The pole~-zero locations of open-ioop pitch angle to
longitudinal cyclic transfer function at 60KTS and 100KTS
are presented in Tables 5-5 and 5-6. There is only one
pole-zero close pair, which is associate with regressing lag
mode, in the overall transer function. Hence the simpli-
fied transfer function presented in the table is much more
involved. As at hover, it is implied that the pitch

response of the helicopter which is a key figure for the
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POLES ZEROS

1 0.0000E+00 0.00002+00

2 0.0000E+00 0.0000:+00

3 0.0000E+00 0.0000z+00 -0.2283E+03 0.0000E+0O
4 -0.9359E+01 0.5207E+02 0.1055E+03 0.0000E+00
) -0.9359E+01 -0.5207E+02 -0.1500E+01 0.5544E+02
6 -0.2012E+01 0.39542+02 ~0.1500E+01 -0.5544E+02
7 -0.2012E+01 -0.3954:3+02 -0.5593E+02 0.0000E+0O0O
8 -0.8313E+01 0.2503:2+02 -0.5681E+01 0.2826E+02
S -0.8313E+01 -0.25031:+02 ~-0.5681E+01 -0.2826E+02
10 -0.2428E+02 0.70111+01 0.5003E+00 0.1814E+02
11 -0.2428E+02 =-0.70111+01 0.5003E+00 =-0.1814E+02
12 -0.1177E+01 0.17741+02 -0.1596E+02 0.2315E+01
13 -0.1177E+01 -0.17741+02 -0.1596E+02 -0.2315E+01
14 -0.1949E+02 0.00001:+00 -0.2118E+01 0.7736E+01
15 -0.2082E+01 0.7671L+01 ~0.2118E+01 -0.7736E+01
16 -0.2092E+01 ~0.7671E+01 -0.6366E+01 0.1082E+01
17 -0.4444E+01 0.3883E+01 -0.6366E+01 =-0.1082E+01
18 -0.4444E+01 -0.3883L+01 -0.1676E+01 0.4423E+01
19 -0.3830E+01 0.0000E+00 -0.1676E+01 -0.4423E+01
20 -0.2137E+00 0.1254E+01 -0.3050E+00 0.1118E+01
21 -0.2137E+00 -0.1254FE+01 -0.3050E+00 -0.1118E+01
22 -0.9324E+00 0.1093E+01 -0.6778E+00 0.0000E+00
23 -0.9324E+00 =-0.1093E+01 0.1721E-10 0.0000E+00
24 0.149CE-01 0.5367E-01 -0.2397E-02 0.0000E+00
25 0.1490E-01 =-0.5367E-01 -0.2378E-01 0.0000E+00
26 0.2209E+00 0.0000L +00 0.5138E-11 0.0000E+00
27 -0.3006E+00 0.0000CE+00 0.1640E-13 0.0000E+00

APPROXIMATE TRANSFER FUNCTION

Pitch(s)

0.116(S-0.01721)(S+0.002397)(S+0.6778)

(S—0.0l49+jO.C5367)(S-0.0l49-j0.05367)(S-O.2209)

(S+O.305+j1.118)(S+0.305-j1.118)(S+1.676-j4.423)

(S+O.9324-j1.093)(S+O.9324+j1.093)(S+O.2137+jl.254)

(S+1.676+j4.423) (S+£.366+371.082)(S+6.366-j1.082)

(S+O.2137-j1.254)(S+4.444-j3.883)(S+4.444+j3.883)(S+3.83)

TABLE 5-5 Poles, Zeros and Approximate Transfer Function
of Longitudinal Helicopter Dynamics at 60KTS
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POLES ZEROS

1 0.0000E+Q0 0.0000E -00
2 0.0000E+0Q0 0.0000E+00
3 0.0000E+0Q0 0.0000E 00 -0.2013E+03 0.0000E+00
4 -0.9025E+01 0.5194E+02 -0.8070E+02 0.0000E+00
5 -0.9025E+01 ~0.5194E+02 -0.4372E+01 0.5287E+02
& -0.2083E+01 0.3887E+02 -0.4372E+01 -0.5287E+02
7 -0.2083E+01 -0.3897E+02 0.3553E+02 0.0000E+00
8 -0.3312E+02 0.1683E+02 -0.2014E+01 0.3259E+02
9 -0.3312E+02 =-0.1683E+02 -0.2014E+01 =-0.3259E+02
10 -0.7759E+01 0.2517E+02 -0.1983E+02 0.6674E+01
11 ~-0.7759E+01 =0.2517E+02 -0.1983E+02 =0.6674E+01
12 -0.2418E+0C2 0.0000E+00 -0.5780E+00 0.1764E+02
13 -0.1167E+0Q1 0.1738E+02 ~-0.5780E+00 =-0.1764E+02
14 -0.1167E+01 -0.1738E-02 -0.2321E+01 0.8041E+01
15 -0.2269E+01 0.7914E+01 -0.2321E+01 -0.8041E+01
16 -0.2269E+01 =-0.7914E+01 -0.9728E+01 0.0000E+00
17 -0.5138E+01 0.4588E+01 -0.8057E+01 0.0000E+00
18 -0.5138E+01 =0.4588E+01 -0.1563E+01 0.4835E+01
19 ~-0.4890E+01 0.0000E +00 -0.1563E+01 -0.4835E+01
20 -0.3618E+00 0.1440E+01 -0.3449E+00 0.1338E+01
21 -0.3618E+00 =-0.1440E+01 -0.344%E+00 =-0.1338E+01
22 -0.1146E+401 0.1503E+01 -0.9088E+0Q0 0.0000E+QO0
23 -0.1146E+01 ~0.1503E+01 -0.1261E-01 0.0000E+00
24 0.1137E-01 0.4161E-01 -0.1152E-09 0.0000E+00
25 0.1137E-01 ~0.4161E-01 -0.1158E-02 0.0000E+00
26 0.1528E+00 0.0000E+00 0.2535E-11 0.0000E+00
27 -0.9152E-01 0.0000E+00 0.4516E-12 0.0000E+00

ORIGINAL PAGE 1T

APPROXIMATE TRANSFER FUNCIION

Pitch(s) 0.3924(S+).001261)(S+0.01261)

Bls(s) (5-0.01137+30.04161)(S~0.01137-30.04161)

(S+0.9088)(S+0.3419-3j1.338)(S+0.3449+31.338)

(S+0.09152)(S+0.3618+31.44) (S+0.3618-71.44)(S+1.146+j1.503)

(S+1.563-j4.835)(S+1.563+3j4.835)(S+8.057)(S+9.728)

(S+1.146+31.503)(S+4.89)(S+5.138-3j4.588)(S+5.138+3j4.588)

TABLE 5-6 Poles, Zeros and Approximate Transfer Function
of Longitudinal Helicopter Dynamics at 100KTS
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longitudinal dynamics, is strongly coupled with the lateral

and directional dynamics.

5.2.3 Pitch Rate feedbachk

The longitudinal root Joci of the helicopter with pitch
rate feedback in a gain range from zero to 1.5 Deg/(Deg/Sec)
are shown in Figs. 5-13, £-14 and 5-15 for the hover, 60KTS
and 100KTS forward flight respectively.

At hover the pitch rate feedback increases the damping
ratio of the long perioc mode very effectively by both
increasing the damping and reducing the frequency, and sta-
bilized the unstable mode ¢t gain K=0.5 Deg/(Deg/Sec). In
contrast to the attitude feedback, the pitch rate feedback
moves the two coupled body pitch/regressing flap real roots
closing to each other anc becoming a complex pair at the
gain K=0.18 and finally ccupling with the lateral coupled
body roll/regressing flap nrode, making it more stable. This
means that at 1low gain rarge, the feedback stabilized the

dominant less stable one c¢f the two body pitch/regressing

flap modes. Furthermore, the feedback slightly stabilizes
the yaw damping mode as well, although the effect 1is too
small to be shown in the rcot loci. All of these make the

pitch rate feedback more keneficial than the corresponding
pitch attitude feedback.

For forward flight, tle pitch rate feedback offers the
same beneficial improvements. The feedback not only increas-

es the damping of the unstable long period mode but also
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increases the damping of the oscillatory short period mode,
both of them are dominant modes in the long period response
and the short period response respectively, although it
decreases the damping of the stable long period mode and the
real root of short period mode.

The feedback limitation for pitch rate feedback comes
from the destabilized lay motion. The advancing lag mode
becomes unstable at feedbick gain about K=1.5 Deg/(Deg/Sec)
for hover. The effect on the damping of the advanced lag
with the pitch rate feedback gain for hover and forward
flight are shown in Fig. 5-16. As can be seen, the limita-

tion is relaxed significantly at forward flight.

5.2.4 Roll Rate feedbaclk

So far all of the feecdback gain limitations encounted by
the rotor/fuselage coupling are quite high compared to those
conventionally used in tle rotorcraft. However, the gain
limitations in roll rate feedback are far lower. At hover
the advancing lag mode becomes unstable-with a feedback gain
0.23 Deg/(Deg/Sec), 1in {forward flight the coning lag mode
becomes unstable at about the same feedback gain at 100 KTS.
Figs. 5-17 and 5-18 present the effect of the roll rate
feedback on the dampings of the advancing lag mode and the
coning lag mode. As can be seen, although the destabilized
mode changes from advancing lag at hover to the coning lag
at high speed, the limitation in feedback gain which will

destabilize the rotor/fuselage system does not change sig-
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nificantly. Therefore, the roll rate feedback has to be
used with caution in the whole flight speed range.

The precise value of tre limiting gain is of course sen-
sitive to the estimation ¢f the mechanical lag damper char-
acteristics. The effect of the estimated mechanical damping
on the advancing lag damping is shown in Fig. 5-19 for roll
rate feedback near the stability boundary of the helicopter
at hover. The increase of the mechanical damping will
result 1in a increase in the allowable rate gain before
instability is encounted. Therefore, for the nonlinear dam-
per whose estimated damping increases with the oscillatory
velocity, the slightly unstable mode only means a moderate
oscillation limit cycle.

Unfortunately the roll rate feedback is very beneficial
for the helicopter lateral dynamics. At hover the roll/
lateral velocity mode and body roll/regressing flap mode are
stabilized by the feedback this can not be done simultane-
ously by the attitude feedback. In forward flight, the body
roll/regressing flap mode, which is unstable for the high
gain roll attitude feedbac}, and dutch roll mode, which can
not be stabilized by the 101l attitude feedback, are both
stabilized by the feedback. The spiral mode, which can be
effectively stabilized by the roll attitude feedback, is
affected very little by the roll rate feedback. The fre-
quency response of the helicopter roll rate at hover to the

lateral cyclic input with roll rate feedback is shown in
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Fig. 5-20. As can be seen, the roll rate feedback increases
the bandwidth of the rate command system by both moving the
low frequency response peak, which associated with lateral
phugoid mode, to lower frecquency and increasing magnitude of
the rate response at high frequencies. This will signifi-
cantly improve the ablity of the helicopter for the
manoeuvre requirement. The corresponding phase characteris-
tics also have the same extension. The frequency response
of the helicopter roll rate for forward flight to the later-
al cyclic input with roll rate féedback is shown in Figs.
5-21 and 5-22. Although the peak to be smoothed is small
itself, the roll rate feedback makes the improvement in the
high frequency range, which is the most important for the

manoceuvre capability.

5.2.5 Summary

For the simple feedback control, the blade dynamics can
severely limit the useable values of the feedback gains,
especially for the roll rate feedback. The fuselage atti-
tude gain limitations arise primarily from the stability
limits associated with the coupled body-flap modes, the
fuselage rate gain limitations arise primarily from the sta-
bility limits associated with the lag modes. It should be
noted that rate feedback always stabilizes those fuselage/
flap modes which produce the limitations in the attitude
feedback. The proper combination with rate feedback will

hence increase the attitude feedback limitation, which is
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already quite high. Therefore the limitation on the atti-
tude feedback should be not a real problem for the automatic
control design. However, the effect of attitude feedback on
the lag modes is very small, although it is stabilizing.
Therefore the limitations on the rate feedback can not be
relaxed by addition of attitude feedback. Consequently it
can be concluded that recucing the destabilizing effect of
the feedback control on ttre lag dynamics will be required to
raise the feedback gain limitations.

For the low frequerncy longitudinal dynamics, the
improvement obtained by tre pitch attitude and/or pitch rate
feedback is limited because of the coupling with the lateral
dynamics. It seems that good lateral dynamics, especially a
stable spiral mode, is essential to achieve satisfactory
longitudinal dynamics. The gain limitations due to the
blade dynamics are not critical for their relative high val-
ues. For the lateral dynamics, in contrast, the simple roll
attitude or roll rate feedback offers a significant improve-
ment to the lateral dynamics. The prope; combination of both

can give perfect lateral dynamical characteristics.

5.3 Multivariable Optimal Control

Active control considered in this section is based on the
deterministic linear optimal regulator problem[35,36]. The
purpose of the present study is to show the effect of the

lag dynamics on the overal: system controller design. For
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the sake of clarity, it .s assumed that all of the states,
including the dynamic inf ow, are available for measurement.
Optimal control theor’ is applied to the linear, con-
stant coefficient differential Eqg.(8) written in first
order form
X' =AX+HBU (9)
Y = CX (10)
The objective 1is now to find controls U, that is the
cyclic control inputs to the swashplate and the collective
control input to the tai. rotor, which will minimize the
guadratic cost function.
J = r{TQ Yy + UR U dt (11)
(o]
where the welghting matrices ¢ and R are assumed to be
symmetric and positive de:inite. The solution is the deter-

ministic optimal control.er with 1linear feedback of all

state variables.

U =KX (12)
where
K = - R'B"s : (13)
and the matrix S is the constant, symmetric, positive

definite solution of the ilgebraic Riccati equation.

SA + A's - sBR'B"s - c"oc =0 (14)
The closed loop dynamics equation is then defined as
X' = (A+BK) X (15)

For the multivariable optimal control, the choice of a

performance index, rather than feedback gains, to obtain the
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desired response is the central feature of the method. The
solution of the optimal regulator problem is well defined,
if the equations for a complex multi-input, multi-output
plant is in hand. The principal difficulty lies not in the
solution but in the choice of a suitable performance index.
The solution is optimal in the sense that the chosen per-
formance index is minimi:zed, but different optimal solutions
can be obtained by alter:ng the Q@ and R matrices. The per-
formance index may be interpreted as a quantitative measure
of the system performance. The R matrix penalizes the con-
trol input required. Tle Q matrix penalizes the error in
maintaining a desired trejectory.

A system model which includes only {lapping dynamics is
obtained from the systen model developed in Chapter 3 by
simply letting the pertirbation variables associated with
lag degrees of freedom ke zero. This kind model has been
used for controller design of helicopters by many previous
investigators. The feedtack controller then was designed by
using the MacFarlane-Potter concept of eigenvector decompo-

sition instead of integrzting matrix Riccati equations.

5.3.1 Standard Performaznce Index

The gquadratic perforrmance index used here is of the form

Q0
J = J acY¥'I ¥> + rcu'I W dt (16)
(o]

In the present study the output scaling matrix C is cho-
sen so that the output vector y only corresponds the three

fuselage rotation attituces, i.e. the system velocities, the
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translational displacements, and the blade dynamic variables
are not included in the cost function. The weighting matrix-
es Q and R are assumed to be diagonal, a production of a
number and a wunit matrix, gl and rI. Some investigaters
consider that gq/r=1 gives a good choice in terms of balanc-
ing control effort, system stablity, and system
response{37]. For the design of tighter controllers, which
tend to hold fuselage pitclk, roll and yaw angles to smaller
deviations, weighting factor g/r on the fuselage rotation
angles is increased from 1 to 5, and then to 25. These
tighter controllers are then evaluated on the complete sys-
tem model including the lac dynamics.

The main feedback gains obtained by applying the linear
optimal regulator theory or the model which does not include
the lag degrees of freedom, and the dampings of the advanc-
ing lag and coning lag moces obtained by applying the same
feedback on the complete mcdel including the lag degrees of
freedom are presented in Tables 5-7, 5-8, and 5-9 for the
cases of hover, 60KTS and 100KTS level flight respectively.

The resulting eigenvalues obtained from the complete sys-
tem model by applying the feedback 1law obtained from the
model without the lag degrees of freedom show that increas-
ing the weighting factor ¢/r results in an instability in
the lag degrees of freedom. The dampings of the advancing
lag mode and the coning lag mode vary with the same trend

obtained for the simple roll rate feedback. The correspond-
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The Primary Feedback Gains:

q/r 1 5 25
Als
_____________ 0.65 1.736 4.143
Roll Attitude
Bls
------------- 0.96¢ 2.087 4.529
Pitch Attitude
Tot
------------- 0.98¢ 2.198 4.869
Yaw Attitude
Als
............. 0.12z5 0.285 0.5635
Roll Rate
Bls
------------- 0.44¢7 0.7718 1.3
Pitch Rate
Tot
------------- 0.69¢€5 1.076 1.633
Yaw Rate

The Damping of Lag Modes:

Advancing Lag -0.2625 1.143 2.784

Coning Lag -1.35+« ~-1.038 -0.2897

Table 5-7 The Primary Feedback Gains and The Damping of
Lag Modes For Standard Optimal Feedback at Hover



The Primary Feedback Gains:

q/r 1
Als
............. 0.8Y
Roll Attitude
Bls
............. 0.85L7
Pitch Attitude
Tot
_____________ 0.7575
Yaw Attitude
Als
............. 0.1:
Roll Rate
Bls
............. 0.3¢96
Pitch Rate
Tot
............. 0.4037
Yaw Rate

The Damping of Lag Modes:

Advancing Lag -0.9t48

Coning Lag -0.9¢01

.792

.972

.905

.290

. 744

.6848

.0147

.5625

106

25

4.195

4.439

4.434

0.5685

1.316

1.079

1.197

0.1967

Table 5-8 The Primary leedback Gains and The Damping of
Lag Modes For Standerd Optimal Feedback at 60KTS



The Primary Feedback Géins:

Yaw Rate

.6716

.7€78

.6€61

.1248

.3418

.3678

The Damping of Lag Modes:

Advancing Lag

Coning Lag

-1.352

-0.8667

.775

.82

. 799

.2797

.6623

.6597

.6556

. 3597

107

25

.189

.194

.333

.5506

.217

.067

.3157

.4177

Table 5-9 The Primary Feedback Gains and The Damping of
Lag Modes For Standa:d Optimal Feedback at 100KTS
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ing feedback boundary is also the same as the boundary for
the simple roll rate feedba:k. In fact, when the weighting
ratio g/r 1increases, the primary feedback gains increase
together by about the same factor. The attitude feedback
gains increase beyond the limiting wvalue, which produce
instability for the simple attitude feedback, at g/r=5 with-
out resulting the flappiny instability because the rate
feedback gains increase as well, which stabilizes the
coupled fuselage/regressing flap mode as shown in the last
section. However, when the roll rate gain 1is beyond the
limiting value, there is no significant stabilizing effect
from other feedback loops. Hence the instablity that occurs
in these cases has the sane trend as roll rate feedback
alone studied in the last s=ction.

It is worthwhile to mention that at hover the limiting
g/r ratio for the instability due to unmodeled lag dynamics
is less than 5. This number 1is much smaller than a similar
limiting boundary due to unmodeled flapping dynamics given
in Ref.b6. This suggests that as far as stability is con-
cerned, the inclusion of the lagging dynamics in the system
modelling for the controller design has more practical sig-
nificance than the inclusion of the flapping dynamics,
although the latter may be more important in terms such as

control and response.
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5.3.2 Frequency-Shaped Performance Index
The poles associated with the suppressed lag degrees of
freedom have low open-lcop damping and are relative high
frequency. They lie very close to the imaginary axis in the
s-plane. Therefore any nisplaced control energy (spillover)
will push them quickly irto instability. Readjusting Q@ and R
to prevent this (the only means available for the standard
performance index desigr) can cause a drastic loss of
closed-loop damping in tle design mode poles, in some cases
to the point where almcst no closed-loop improvement in
damping is possible. Tre problem arises from the fact that
penalty matrices Q and R penalize the states and controls by
the same amount at all freguencies.
OCne way to avold constant penalties is the use of
frequency-shaped cost furctionals, an extention of standard
linear optimal regulator design[38]. In this method, the

performance index to be minimized is assumed to be a func-

tion of frequency as follows:

J = J(DYT(jw)Q(jw)Y(jw) + UTCJwWRCjwIUCjwd  dw (17)
-

Note that here the weighting matrices Q and R are func-
tions of frequency, rather than constant matrices. The
detailed discussion of this method is given in Refs.39 and
40. The physical concept of the frequency-shaped cost func-
tionals is that the performance index is defined such that
the low frequency error in maintaining a desired trajectory

and the high frequency inputs are more heavily penalized
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such that the feedback energy is mainly placed on the low
frequency fuselage dynami:cs. The cost function can be
defined in three ways: (1) frequency-shaped response penal-
ty with constant control pz2nalty, (2) frequency-shaped con-
trol penalty with constant response penalty, and (3)
frequency-shaped both response and control penalties. It
should be noticed that the freguency-shaped response penalty
leads to increasing degrez2s of freedom of the system to be
augmented, and the freguen:y-shaped control penalty leads to
feed forward of the deriva:tives of the control inputs. The
numerical study shows that introducing new degrees of free-
dom of the system, whose srder 1is quite high already, not
only results in difficulti.es for system analysis but also
requires extremely high fe=dback gains which are physically
unrealistic. Therefore, only a frequency-shaped control
penalty is used in this study.

The performance index :then is defined as:

2 2

3 w+ b .

T

J = I qVYY +r (——2 > U U dw (18)
- b

The frequency-shaped control penalty used here is equiv-
alent to inclusion of a shaping filter in the forward path
of a standard optimal control problem. The corresponding
shaping filter has a transfer function of the form:

U = b/(jwtb) Uc (19)
The low pass characteristics of the filter will reduce
the high freguency component in the feedback so as to penal-

ize the high frequency conztrol. This is physically conven-
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ient for the implementation because actuator dynamics can be
thought of as having the form of shaping filters. Since the
frequencies of the coning and advancing lag modes are about
38 and 16 rad/sec, the corner frequency of the low pass fil-
ter used in the study is cliosen to be 10 rad/sec.

The ratio g/r here can not be directly compared with the
ratio in the eq.(16) beczuse the frequency-shaped control
penalty has changed the spectrum distribution of r in fre-
quency domain. Thus the ratio gq/r is decided independently
here and the chosen ratics for the frequency-shaped cost
functions are 10, 100, 1000, and 10000.

The main feedback gains obtained by applying the linear
optimal regulator theory with frequency-shaped cost control
penalty on the model whiclh not includes the 1lag degrees of
freedom and the dampings of the advancing lag and coning lag
modes obtained by applying the same feedback on the complete
model which includes the lzg degrees of freedom are present-
ed in Tables 5-10, 5-11, and 5-12 for the cases of hover,
60KTS and 100KTS level flicht respectively.

The resulting eigenvalues obtained from the complete sys-
tem model show the same trend for an instablity in lag modes
as standard optimal control. However corresponding feedback
gains for the instablity zre much higher than the standard
cost function. The frequency shaped-optimal feedback has
introduced new poles into the overall system, the Butter-

worth configuration of the system has been changed so that



The Primary Feedback Gains:

q/r 10
Als
------------- 0.94
Roll Attitude
Bls
............. 3.07
Pitch Attitude
Tot
------------- 3.13
Yaw Attitude
Als
------------- 0.2
Roll Rate
Bls
------------- 1.71
Pitch Rate
Tot
_____________ 2.53
Yaw Rate

The Damping of Lag Modes:

Advancing Lag -2.00

Coning Lag -1.40

100

.44

.84

.16

.28

.64

.01

.78

1000

22.2

29.0

30.9

10.37

12.4

-1.63

-2.36

112

10000

78.0

88.77

96.37

12.1

24.37

26.86

-1.11

Table 5-10 The Primary Feedback Gains and The Damping of
Lag Modes For Frequency Shaped Optimal Feedback at Hover



The Primary Feedback Gains:

Yaw Rate

The Damping of Lag Modes:

Advancing Lag

Coning Lag

10

.00

.58

.96

.27

.44

.55

-2.04

-1.26

100

-2.09

-1.48

1000

22.8

27.7

26.8

10.09

-2.03

-1.56

113

10000

78.3

87.59

86.98

12.16

24.75

19.6

-1.07

-0.44

Table 5-11 The Primary Feedback Gains and The Damping of
Lag Modes For Frequency Shaped Optimal Feedback at 60KTS
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The Primary Feedback Gains:

q/r 10 100 1000 10000
Als
............. 0.83 5.24 22.27 77.88
Roll Attitude
Bls
............. 2.23 7.68 25.63 82.85
Pitch Attitude
Tot
............. 1.49 6.92 25.57 85.43
Yaw Attitude
Als
............. 0.25 1.21 4.14 11.83
Roll Rate
Bls
_____________ 1.20 3.45 9.22 23.54
Pitch Rate
Tot
............. 1.38 3.66 8.70 19.5
Yaw Rate

The Damping of Lag Modes:

Advancing Lag -2.10 -2.13 -2.08 -1.07

Coning Lag -1.23 -1.37 -1.10 0.046

Table 5-12 The Primary Feedback Gains and The Damping of
Lag Modes For Frequency Shaped Optimal Feedback at 100KTS
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q/r 1 5
Damping Frequency Damping Frequency
Hover -0.99 1.243 -1.46 1.862
-1.29 1.971 -1.76 2.737
-2.93 4.227 -3.63 5.495
-2.22 7.504 -2.33 7.414
-5.80 0.000 -7.46 0.000
-6.68 0.000 -9.30 0.000
60 KTS -1.03 1.807 -1.40 2.454
-1.50 2.025 -2.16 2.897
-3.15 4.255 -4.24 6.123
-2.34 7.335 -2.23 6.920
-4 .94 0.000 -5.78 0.000
-9.33 0.000 -16.2 2.228
100 KTS -1.08 1.829 -1.56 2.568
-1.62 2.443 -2.26 3.228
-4.09 4.708 -5.15 6.729
-2.52 7.420 -2.30 7.039
-6.12 0.000 -7.19 0.000
-9.61 0.000 -15.6 0.000
q/r 25

Damping Frequency

Hover -2.10 2.808
~2.45 3.716
-5.29 6.687
-2.44 7.261
-8.82 0.000
-11.5 0.000
60 KTS -1.96 3.370
-3.12 4.264
-2.11 6.768
-6.19 7.457
-6.72 0.000
-17.5 5.903
100 KTS -2.20 3.700
-3.31 4.531
-2.33 6.729
-6.82 8.212
-8.69 0.000
-23.2 ©.000

Table 5-13 The Poles Asscciated With The Short Period Flight
Dynamic Characteristics of The Helicopter Under
Standard Optimal Feedback
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q/r 10 100
Damping Frequency Damping Fregquency
Hover -0.79 1.545 -1.14 2.208
-0.89 1.891 -1.34 2.638
-1.85 1.745 -2.49 3.224
-4 .45 2.338 -5.29 3.702
-4.43 5.137 -6.92 6.951
-2.07 7.672 -2.15 7.768
60 KTS -1.80 1.130 -2.12 2.791
-0.81 1.844 -1.10 2.387
-1.29 2.4%6 -2.14 3.683
-3.78 2.101 -4.72 3.032
-5.27 5.312 -7.32 7.800
-2.24 7.747 ~-2.48 7.773
100 KTsS -1.98 0.687 -1.20 2.593
-0.89 1.954 -2.95 3.075
-1.32 2.654 -2.02 3.516
-4.25 1.944 -5.13 3.255
-5.56 6.063 -2.76 7.969%
-2.47 7.972 -7.61 8.690
q/r 1000 10000
Damping Fregquency Damping Freguency
Hover -1.61 3.101 -2.26 4,297
-1.96 3.625 -2.47 5.087
-3.40 4.539 -4.51 5.268
-6.68 5.618 -9.48 8.727
-2.41 7.962 -3.35 8.358
-12.4 11.19 -15.4 0.000
60 KTS -1.57 3.192 -2.40 4,398
-2.62 4.166 -4.27 5.313
-2.7% 5.226 ~-1.84 5.757
-6.29 4,302 -10.0 6.375
-3.21 7.921 -5.00 9.365
-10.9 11.63 -18.2 11.49
100 KTS -1.67 3.571 -2.99 4.888
-2.51 4.563 -1.57 5.491
-3.79 5.204 -5.14 5.745
-6.31 5.047 -5.42 9.550
-3.64 8.092 -8.72 8.234
-11.5 13.06 -17.9 17.57

Table 5-14 The Poles Associated With The Short Period Flight
Dynamical Characteristics of The Helicopter Under
Frequency Shaped Optimal Feedback
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damping ratio can not be used as a measurement of the system
augmentation. The dampings and frequencies of the short
period modes associated closely with the fuselage dynamics
are presented in Table 5-13 and Table 5-14 for both standard
and frequency-shaped cost functions. If the lowest damping
of these modes is used as a measurement for the system's
augmentation, the case g/r=1000 with the frequency-shaped
cost function will be more stabilized by the feedback than
the case g/r=5 with the standard cost function, and the case
g/r=10000 with the frequency-shaped cost function will be
more stabilized by the feedback than the case g/r=25 with
the standard cost function. The feedback limitations for
the frequency-shaped optimal control due to the unmodelled
lag degrees of freedom therefore are not only numerically
much larger but also offering much stronger system augmenta-
tion in stability and control characteristics. In addition,
the feedback gains required by the gq/r=10000 case are far
higher than those that are physically practical. This sug-
gests that by applying the frequency-shaped cost function on
the helicopter automatic control system design, the unstable
effect due to the unmodelled lag degrees of freedom can be
removed.

To illustrate the advantages of the optimal feedback con-
trol, the frequency responses of helicopter roll attitude to
lateral cyclic input are shown in Figs. 5-23, 5-24, and 5-25

for the standard optimal feedback control and in Figs. 5-26,
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5-27, and b5-28 for the frequency-shaped optimal feedback
control.

By comparing with the corresponding frequency responses
obtained by the simple attitude feedback, it can be seen
that the main improvements obtained by the standard optimal
feedback control are limited in phase characteristics. The
Bode amplitude characteristics by the standard optimal feed-
back is only improved a little by smoothing the peak at high
frequency end in the bandwidth obtained by the strong atti-
tude feedback. The phase characteristics, in contrast, have
a significant improvement by reducing the phase shift at
high frequency range 5-15 rad/sec. At these high frequen-
cies, the simple attitude feedback cannot offer any reduc-
tion. As for the very low frequencies, the standard optimal
feedback gives the same trend in both amplitude and phase
characteristics as the simple attitude feedback.

The frequency-shaped optimal feedback control, however,
has improved the frequency responses in both amplitude and
phase characteristics. The frequency responses obtained by
the frequency-shaped optimal feedback have perfect low fre-~
quency characteristics. The amplitude characteristics at
low frequencies up to 2 rad/sec is a straight line for any
g/r ratio. For phase characteristics, the freguency-shaped
optimal control has totally removed the phase lead resulting
from the nonminimum phase characteristics; this is especial-

ly obvious in the hover case. In addition, at a quite wide
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range of frequency, the phase shift is very small and is
significant reduced along with the increasing of the q/r
ratio. For the high frequency part, in spite of the fact
that the frequency-shaped optimal control is designed to
reduce the high frequency augmentation, the obtained
improvements seem still better for the high gain simple
attitude feedback. The amplitude characteristics obtained
by the frequency-shaped optimal feedback are not only better
than the simple attitude feedback by removing the high fre-
quency peak but also better than the standard optimal feed-
back in term of the maximum achievable bandwidth. Take hov-
er case as a example, the g/r=5 standard optimal feedback
case has almost the same bandwidth with the a/r=1000
frequency-shaped optimal feedback case. However for standard
optimal feedback, the advancing lag mode has became unstable
far below the g/r=5, in contrast, for the frequency-shaped
optimal feedback, the system will be stable until q/r=10000.
For the high frequency phase characteristics, the reductions
of phase shift obtained by the frequency-shaped optimal
feedback are smaller than those obtained by the standard
optimal feedback but still offer improvements which can not
be obtained by the simple attitude feedback because for the
simple attitude feedback, there is no phase shift reduction
at frequencies higher than 6 rad/sec. Therefore, it is
clearly suggested that the improvements obtained by the

frequency-shaped optimal feedback are much more practical.
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5.3.3 Simplified Optimal Control

The design of linear controllers in this section results
in a feedback structure which requires the measurement and
feedback of all state variables except translational posi-
tions. The obvious impracticality of this requirement has
led to several research efforts directed toward the synthe-
sis of simplified controllers which are more easily imple-
mented than would be the optimal control. As a result, a
series of simplified controllers are developed through suc-
cessive reduction in the number of feedback loops while
using the feedback gain factors obtained for the optimal
control. The sequence of the loop reduction is determined by
both the difficulties for measurement and the importance of
the feedback requirement of the loop;the latter is naturally
measured by the amplitude of the corresponding gain for the
optimal control. In addition, particular emphasis is placed
on eliminating the feedback of rotor degrees of freedom. The
gain constants for these reduced state feedback controller
are chosen as the values obtained for the corresponding
states in the optimal controller.

The first loop reduction is eliminating the feedback of
dynamic inflow because these state variables can not be
measured. and removing the feedback of translational fuse-
lage velocities because the corresponding gains for this
group state variables are far smaller than others, conse-

quently they are considered the least important for the
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feedback control. The number of remaining feedback loops
for this simplified controller, called controller A, is 12.
For the controller B, flapping velocities of the blade are
also eliminated from the feedback. This is due to both the
difficulties in measurement and the importance considera-
tion. The number of remained feedback loops for this sim-
plified controller 1is 9. The controller C is formed by
eliminating flapping attitudes from the system feedback
loops. The reguired gains for these attitude feedback loops
are in the same order as those for fuselage attitudes, but
the measurements are more difficult and more expensive than
the corresponding fuselage attitudes because the resolution
of the measurements from rotating to nonrotating axes 1is
required. The number of remained feedback loops for this
simplified controller C is 6. The final loop reduction is
eliminating the feedback of three fuselage angular veloci-
ties simply because for standard optimal control, removing
these feedback 1loops result in a favourable increasing of
the dampings of the lag modes, which are the very modes
resulting stablity limitations for the feedback control.
The number of remained feedback loops for this simplified
controller D is 3.

The poles associated with the short period flight dynami-
cal characteristics obtained by various reduced loop con-
trollers are shown in the Table 5-15 for the simple standard

optimal feedback control with g/r=1 and in the Table 5-16
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Number of 12 9
feedback loops
Damping Frequency Damping Frequency
Hover -1.01 1.239 -1.01 1.239
-1.30 1.979 -1.30 1.963
-2.99 4.578 -2.96 4.563
-2.22 7.502 -2.22 7.501
-1.35 17.13 -12.7 17.20
-0.28 39.42 -0.33 40.01
60 KTS -1.06 1.833 -1.06 1.828
-1.54 2.056 -1.56 2.049
-3.07 4.302 -3.06 4.212
-2.35 7.333 -2.35 7.328
-0.99 17.16 -0.94 17.21
~0.94 39.13 -0.84 39.54
100 KTS -1.09 1.847 -1.09 1.845
-1.64 2.553 -1.66 2.541
-4.01 4.683 -3.94 4.578
-2.51 7.423 -2.52 7.419
-0.87 16.88 -0.83 16.92
-1.36 38.73 -1.33 38.99
Number of & 3
feedback loops
Damping Frequency Damping Frequency
Hover -1.02 1.239 -1.02 1.58¢9
-1.89 2.871 -0.03 2.521
-3.01 7.061 -0.66 5.825
-2.23 7.460 -2.02 7.643
-1.60 16.79 -1.53 17.98
-0.07 39.11 -2.03 39.51
60 KTS -1.20 1.834 -1.79 2.042
-1.75 2.674 -0.32 2.583
-1.96 7.005 -5.88 5.453
-3.52 7.601 -2.12 7.881
-1.15 16.96 -1.37 17.75
-0.91 38.93 -2.09 39.43
100 KTS -1.14 1.917 -0.23 2.048
-2.00 3.168 -0.44 2.826
-1.97 7.371 -0.63 5.980
~4.27 9.031 -2.28 8.249
-1.04 16.52 -1.39 17.36
-1.33 38.60 -2.13 38.89

Table 5-15 The Poles Associated With The Short Period Flight
Dynamic Characteristics of The Helicopter Under
Simplified Standard Optimal Feedback
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Number of 12 9
feedback loops
Damping Fregquency Damping Frequency
Hover -1.61 3.127 -1.64 3.133
-1.90 3.628 -2.00 3.532
-3.44 5.186 -3.13 5.177
-8.10 3.895 -7.33 4.355
-2.43 7.960 -2.44 7.956
-10.3 0.000 -11.0 0.000
60 KTS -1.43 3.194 -1.49 3.192
-2.74 4.104 -2.92 3.971
-2.33 5.336 -2.17 5.272
~-6.59 3.712 -9.98 5.907
-3.23 7.932 -3.27 7.943
-11.6 10.55 -16.2 8.544
100 KTs -1.49 3.540 -1.55 3.537
-2.59 4.872 -2.45 5.204
-3.30 5.058 -3.29 4.458
-8.32 3.304 -8.14 4.703
-3.60 8.088 -3.67 8.151
-10.9 13.26 -12.7 13.53
Number of 6 3
feedback loops
Damping Frequency Damping Frequency
Hover -1.62 3.398 0.326 2.814
-0.74 5.392 0.770 3.561
-3.13 0.000 -6.87 1.022
-13.6 9.951 0.695 6.575
-2.33 7.999 -1.92 7.661
-11.5 0.000 -11.8 0.000
60 KTS -1.22 4.297 0.453 3.103
-1.19 5.453 0.545 3.705
-1.55 7.849 0.619 6.324
-3.04 0.000 -1.87 8.001
-3.15 9.618 -11.5 2.551
-19.5 7.610 -24.9 7.190
100 KTs -1.28 4.307 0.405 3.154
-0.97 5.978 0.538 3.891
-1.92 8.438 0.623 6.665
-3.18 0.000 -11.6 0.000
-2.25 10.99 -1.95 8.359
-24.2 11.13 -15.6 11.96

Table 5-16 The Poles Associated With The Short Period Flight
Dynamical Characteristics of The Helicopter Under
Simplified Frequency Shaped Optimal Feedback
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for the frequency-shaped optimal feedback control with
q/r=1000. Both of them can offer stabilized system dynamics
at all of three chosen flight conditions if all of state
variables are available for measurement. Since the standard
optimal control with high q/r ratio usually results in lag
dynamical instability, the poles associated with the lag
degrees of freedom are also given in the Table 5-15.

The elimination of the feedback of the dynamic inflow,
the translational velocities and the flapping velocities
together has little effect on the system dynamics. Compared
with the baseline optimal controller, the variation of the
short period fuselage dampings and frequencies is quite
small, less than 5% for the standard optimal control and 10%
for the frequency-shaped optimal control. These results
suggest that at least half of the feedback loops theoreti-
cally required by the optimal control method, dynamic
inflow, fuselage translational wvelocities and blade flapping
velocities, are not necessary for practical implementation.
The 18 loop feedback control system ;tudied here can be
replaced with 9 loop implementation without any significant
impact on the system dynamics. The state variables involved
in these 9 unnecessary loops are difficult to measure and to
reconstruct. Therefore the difficulties in implementing the
optimal control methodology is greatly reduced by simply
eliminating these feedback loops. In the remaining feedback

loops, the only blade state variables left are the flapping
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angles. Although without feedback these state variables, the
overall system is still stable, the dynamic characteristics
are almost the same as the original system without any aug-
mentation of the damping ratio. It seems, therefore, that
the flapping angle feedback has to Dbe part of the optimal
control implementation. Fortunately these state variables
need not be measured because it has been found they can be
estimated sufficiently accurately from fuselage state meas-

urements[6].

5.3.4 Summary

Results in this section show that the multivariable opti-
mal control theory is a powerful tool to design high gain
augmentation control systems. The frequency-shaped optimal
control design can offer much better flight dynamic charac-
teristics than either the simple feedback control or the
standard optimal feedback control. The feedback gains com-
puted from the optimal control theories can be used to
develop reduced state feedback systems. The feedback loops
required can be significantly reduced to the half of the
original optimal control designs without any noticable
effect on the overall system dynamics.

Results in this section also show that the lagging dynam-
ics has a more significant impact on the automatic control-
ler design than the flapping dynamics. 1If a standard design
method is used, the lag degrees of freedom must be included

in the system modelling. Otherwise a high gain control sys-
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tem design can lead to unstable close-loop responses due to
the unmodelled lag dynamics. Using a frequency-shaped con-
trol penalty in the system performance index is an effective
way to obtain a stable margin for the feedback system design
without need to model the lagging dynamics.

This margin is essential for any real implementation of a
control system because the actual structure has an infinite
number of modes, and any finite description of the actual
system, though very high order, still has modeling errors.
These are errors which cannot be modeled generally due to
limited knowledge of the structural behavior at high fre-
guencies. Thus if a system controller is important to the
stability and performance, a very robust control system is
required. This is especially true for the helicopter sys-
tems because the difficulties for modeling the high harmonic
blade dynamics and aerod;namics. Therefore the frequency-
shaped cost penalty seems to be a very good methodology for

the helicopter controller design.



Chapter VI

CONCLUSIONS AND RECOMMENDATIONS

This thesis has had four fundamental objectives:

(1) By applying the matrix displacement method and with
the help of a symbolic computer processor, to develop a lin-
ear description of helicopter system including blade dynam-
ics.

(2) To take the rotor/empennage interaction into account
without destruction of the linearity of the system model.

(3) To investigate the effects of blade dynamics on the
automatic control system design with the model developed.

(4) By using the modern optimal control technology, to
find a control methodology capable of removing the limita-
tions due to the unmodelled high frequency blade lag dynam-
ics on the flight control system design of the helicopter.

As indicated in the correlation results with flight test
data shown in Chapter 4, the first and second objectives of
the study have been largely achieved. The excellent corre-
lations for all kinds of small control inputs at hover and
for lateral and directional control inputs at various for-
ward flight speeds are evidence of the success of the lin-
earized model and the simple but effective description of

the effects of the main rotor wake on the tail rotor and

- 133 -
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fixed tails. It is the first linear model of the helicopter
including blade dynamics for forward flight, that makes the
analysis of flight stability and control by the convenient
eigenvalue and eigenvector analysis and the feedback control
design by modern linear control theory possible. The vali-
dation of the model reveals many new ideas.

(1) A linearized model of the helicopter is quite satis-
factory for predicting the stability and control character-
istics. The proper linear model produces a good representa-
tion of helicopter control responses for forward flight as
well as hover.

(2) For forward flicht the sidewash variation at tail
rotor and vertical tail and the nonuniform downwash at hori-
zontal tail are more impcrtant for flight dynamic analysis
than the most inertia, mechanical, and aerodynamic nonli-
nearities. Therefore, better understanding of the influence
of rotor wake on the tail surfaces and tail rotor is one of
the most important factors needed to improve the representa-
tion of helicopter motions. Consequently the proper simple
method to treat the influence will be a key breakthrough for
development of helicopter simulation.

(3) The simple flat wake model employed in this paper
although crude appears to be a good approximation when
sideslip angle remains relatively small.

(4) The influence of the dynamic inflow is most signifi~

cant in hover and somewhat less significant in translational
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flight. 1Its effect can be estimated by methods given in the
literature.

The disadvantages of the model mainly result from the
assumption of constant rotating speed of the main rotor,
which have not been shown to be the case for longitudinal
control inputs at forward flight. It seems that the inclu-
sion of the engine and drive train will be the logical next
step for better modeling. Changes of rotor speed are a
result of an imbalance of the main rotor torgue required and
the engine torque available. Therefore the rotor speed
degree of freedom must involve the engine dynamics and fuel
control system. As for enlarging the range in which the
model is validated for lateral and directional control, the
first thing to do should be improving the modeling of the
influences of the main rotor wake on the tail rotor and
fixed tail surfaces. It seems that for small perturbation
assumption there is still room left for increasing control
inputs.

The third and fourth objectives also have been largely
achieved by the classical and optimal control studies of
Chapter 5. The results obtained by simple feedback control
methodology have very good agreements with the results
obtained by previous works for hover flight condition and
have physically consistent results for translational flight
conditions. The results obtained by the optimal control

methodology has successfully introduced a new feedback con-
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trol concept originally developed for space structure stabji-
lization into the heliccpter control system design. The
following conclusions may be drawn.

(1) The control feedback gain limitations due to unmo-
deled lagging dynamics are much closer to those currently
used in the helicopter industry than those due to unmodeled
flapping dynamics. Therefore much attention has to be given
to the lag degrees of freedomn.

(2) Most of the feedback gain limitations are quite
high except the roll rate, which has the same order as those
currently used in the helicopter industry.

(3) The application of frequency-shaped optimal control
methodology gives us a practical robust control design meth-
od for high gain tighter controller design without need to
worry about the effects of spillover by the unmodeled high

frequency modes.
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Derivation of System Equations of Motion

1) The Transformations between frames

The notations for transformation matrices are

FxCP) = [

TzCy) = [

¢2z(L) =

sinf

1 o 0

O cos¢ =-sing
cosg

O sing

cosy =siny O
siny cosy O
0 0o 1

os!{ =-sin{ ©
cos ©

0 0 1

] FyCo) =

] Ey(3d =

J #zCy D =

r cosG O
o 1
—sine O

siné -
(o]
cosé6 J

- cosf? O
0 1
L-sins3 O

sinf -
0

cos/3 4

rcosy, -si ny, 0

sinwk cosy& L 4]

L 0 o) 1

The fig. 2-1 shows the relationshi§ between the F1 frame

and the inertial frame:

[2).-

x

>4
z

Jo e |

- ¥t cosCa

- VYVt sinCeO

o

|

1

Fig. 2-2 shows the relationship between the F; frame and

the Fz frame. Beside

the

translational

perturbations,

which

carry the frame origin from the trim hub center to the pertur-

bated hub center, the perturbated rotations have following

seguences

1>

(2> A rotation

3

Therefore, the
is

{X}f‘

6 about Y°’,

A rotation -y about Z“, carrying axes to OX°¥*2°'.

carrying axes to OX"Y"2".

transformation relationship for a vector

= {AX > 4+ EZ(-yd3y(OIEXC =D <(X)>
hub f2

@

A rotation -¢ about X', carrying axes to the Fz frame.
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where {Axhub} is the translational perturbation at hub.

Fig. 2-3 shows the relationship between the Fz frame and

the H frame, it is easy to obtain

{X}fz = QZCG&) {X}h <3

Fig. 2-4 shows the relationship between the H frame and
the B frame. Beside the hinge offset displacement, the rota-
tions have following sequence:

3 - . [ [ ’
C1> A rotation =[ about Zh, carrying axes to 0h Xh Yh Zh .

(2) A rotation =3 about Yh', carrying axes to the B frame.

The tranformation relationship for a vector is

e
{X> = 0 + PzC(-0> ¥yC(-/D {X}b (€ )

(4]

2) Kinetic Energy

The position of a fuselage element is given by

{XnD. = {Xcg}. + §z(—w)§y(6)§x(-¢) {Xm)f S
(Xm)f contains the body axis coordinates of the point,
(Xcg}. and (XmD. are the locations of the center of gravity

and the point in the inertial axis system.

The position of an element of a blade in the B frame is
given as:
Xm»_=t(r, 0 0 17 (-5
Then the position of an element of the blade in the

inertial axis system is given by:

(0 i
ST T HEE

;T -
L. BN LI
@ Saedes %)

OF POOR QUALITY
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r
{Xm}' = $z(-yd) Py(8) Ex(-¢ [Qz(wk) [ Ez(~Ld> ByC-r» [O ]
o

e
+ [ o] } + {Xh). &)
o]

{Xh}. is the location of the rotor hub center in the

inertial axis system.

The kinetic energy can be written as:

1 dxm dy dzm
T=—J (c 3% 4 ¢ 3% 4+ ¢ >%) dm (q:>)
2 f+b dt dt dt
3) Potential Energy
The potential energy is given by
2 2
VM (z_ D> +C K + K drse <o
9 cg e E [E] Bk E 4 (k

4) Generalized Force:

Using the position vector given in Eq.(6), it is straight
forward to get the velocity of an element of a blade in the in-

ertial axis (Vb(r)}.. The expression for the velocity components

in the B frame is

{Vb(r)}b = $y(3d #zC{D §z(-wk) Ex(Pd) By(-6> &2C(yD (Vb(r)).
(1o

{Vb(r)). is the velocity components of the rotor element
relative to the inertial axis in the inertial frame. (Vb(r)}b

is the velocity components in the B frame.
Then we get the normal and tangential airfoil velocities

of the element of the blade in the B frame from the relationship:
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A
[ Vi J = {\(bCr)}b c11d
Vp

From quasisteady strip theory we have:

e

2

de = — c Vtk(r) Cdc> dr 12
2

ol ka(r) + Vnk(r)

a 2
dl..k L CL cb Vtk(r) C ek(r) - ) dr 13

2 Vtk(r)
where ekcn is the local pitch angle of the blade:
9(r)k = Go = 614 1 - Ass cosy, - Bis sinwk 1o
where Vnk(r) is the total local downwash of the blade:
Vnk(r) = Vnok(r) + Vndk(r,t)
= Ynot + Vvi r cosy, C Steady Inflow )

4+ VOt 4+ V) r cosy, + V(L) r siny (15
o c k c k
¢ Dynamic Inflow )
The aerodynamic moments and forces of the kth blade

are obtained by:

-e ,-R—e
Fnk = ank( r) = dl_k( rd
JO JO
R-e R-e ka( r) + v"k( rd
Fi.k = dFtk( r) = de( r) + ¢ )de
Jo JO Vtk( r
,-R-e -2
Mrk = r ank( rd Mtk - r dFLk( rd 16>
Jo o

Where Mf and M. are the blade flap and lag aerodynamic

moments and Fn and Fi are the blade normal and inplane aero-
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dynamical shear forces. The expressions for these forces and

moments in the H frame are:

r -th r (o]
~Fi, ] = 3yC® $2C> | -Fi ]
k

L Fr, -k L Fn
- M - O

-M | o= ByC ®zC{D -Ms 17>
L —a Kk L M Jk

Then the virtual work terms due to the aerodynamic forces

acting on the rotor blades can be obtained by

W = T I ka ¢5fik + MLk 6Ek + C thk + Fi.hke)( Sy )
k N

+ C ruhk + Fnhke ¢ =69 s:l.nwk - 686 cosy, p]
+ Hﬂ* C &6¢ cosy, = 66 sinwk b

+ thk C - 6xhQ cosy, = 6yh. sinwk ) + Fnhk ézh.

+ FH& C + 6xh. sinwk - 6yh. cosy&) ] (U

Following the same procedure, the virtual work terms

due to the tail rotor, the fixed tail surfaces, and the fuselage

can be obtained.

5) The Lag Damper Modelling

The lag damper is modeled by a dissipation functions

df 2 ‘
> R (& §°))

D=EC C

. dt
6) The equations of motion

Then, the final system equations are

d acT-vd acT-Vvd aD oW
— ) - + = 200
dt dQ. (.40 8 dQu oQu
o —)

dt dt
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7) The Multiblade Coordinates

The multiblade coordinates are defined as follow:
ﬁk = ﬁ'o - f?1 cosy, - {32 sinwk 21)
(k = t,'o - (1 cosy, = Cz sinwk 22
Then, one obtains the mul tiblade coordinates in terms of
blade flapping and lagging angle.

Collective flapping and lagging Cconing):

1 b |
g = —CLh, (,=—CL¢, 25
k

N ¥ N
First order cyclic flapping and lagging C(tiltingds

1

1
ﬁl = — E —ﬁkcoswk f?z = Tkz -ﬁksinwk 26d

{ = — T -{ cosy, [, = — L ={ siny 27
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Pitt's Model of Dynamic Inflow

The static coupling matrix,

APPENDIX B

the air mass inertial

and the dimensional adjustor matrix are given below:

- 128R -
0 ]
72n
-16R
[M] = o] (o]
45
' -16R
o (o)
- 45n .
- 1 15nJ1—sinaa
e 64 J{1+sinaa
1 15n {1 -sinooa -4sinaa
(L] = J
Vso 64 J1+sinoa 1 +sinaa
(o} 0
L
-1 -
o] 0
pnR®
1
[D) = 0 ]
pnR*
1
o]
L pﬂR‘ -

(Vnot-Vsina)(ZVnot-Vsina)+Vzcosa

o

-4

1 +sinaa

Vso =

V/Vzcosza + (Vnot-VsinoOz

oo = Tand' [

VYcosa

Ynot-VYsina ]

]
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APPENDIX C
The Flat Vortex Theory For Nonuniform Inflow

1) Flat vortex model

Under assumptios mentioned in Chapter 3, it will be more
convenient to use air-trajectory reference frame for the deri-
vation of the flat vortex theory. Thisreference frame has an
origin fixed to the hub center of the helicopter, and the 0X
axis is directed along the velocity vector but backward. The 02
axis is directed up. As a result, the vortex layer will move in
the plane z=0 in this frame. Therefore, all position components
in this appendix are in this air-trajectory frame.

Circulation of a free vortex layer of width Ar which
springs from one blade is

drcrd
ATCr) = = ————— Ar 1
dr

The equation defining the shape of a single free vortex

is given under the following form:

x = R Cwo-w) 4+ r cosy y = r siny 2
where v, is the azimuth angle at which the free vortex

left the blade.

Let us single out an elemental vortex layer associated

with two azimuth positions being different by an angle Av;.

Circulation per unit length in this vorticity layer will be

ATCCr) Awo

AV = 3
en As
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where As is the distance between the cycloids.
r cosy

As = Ax siny tgy = 4
H R ¢+ r siny

From (2) we have:

Ax = u R Awo <5
Then:
Awo 1 ACCr)
= and AY = (6
As ¢ R siny 2n ¢ R siny

Let us replace the free cycloidal vortex layer with two
systems of vortex 1layers: one system of free longitudinal
vortices and one system of free lateral vortices. Circulation.

per unit length of the lateral vortex layer is:

ATCrD
Ay = A¥ siny & <7
2n p R
and the longitudinal one:
ArCr) 4 R ¢ r siny
A¥x = AY cosy = (§:))
en u R r cosy

Free lateral rectilinear vortices will exist only within
a circle of radius r. Outside of this circle, the lateral
votices will disappear as a result of geometric summation of
the incremental circulation, and only longitudinal ones will

remain with doubled value of the circulation per unit length.

2) Nonuniform induced velocity at tail surfaces
As mentioned in the Chapter 3, the nonuniform induced
velocity contribution of the longitudinal vortices is the only

one being considered.
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Jt is assumed that in the trim condition the velocity

field experienced by the tail rotor and tail surfaces is that
on the wake. The induced velocity field of the longitudinal
vortices can be determined by replacing the actual system
of longitudinal vortices by rectilinear vortices extending

from x = - o to x = + o

Then by applying the Biot-Savart Law, the vertical com-

ponent of the induced velocity at a point (xT,yT,O) on the wake

by a free vortex layer of width Ar is given as

dy (@2

ATCr) r U R +r siny
AVz(r) = J*

2n u nR r C(y - yT) r cosy

Let: y = r siny 3 dy = r cosy dy , Then we have:

=ATCrD ns2 g R 4+ r siny
AVz(r) = Ja dy
2n p nRk nsz r siny - Y,
~AT"CrD HR Y. 1 n-2 dy
= ————————[ -1 < + —) Je 10
2n u R r r n n-2 siny - yT/r
Since: [ 0 -rs y*s r
-n
n/z dy y>r
T
= 4 ‘V y.r?d— rz
nsz siny - (yT/ r - 11D
y,<—r
| Yy e r?
Then we obtain: ArCr) H R+ Yy
[ -1 - D) Y, < =-r
2n u R y Zs 12
T
ATCrD
AVZ(r) = {4 - -r < Y, =r (12
en 4 R
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Arcrd H R + Y.
-1 =+ ) y >r

en u R y72+ r?

The vertical induced velocity due to all free vortices

springing from the blade will be

drard
VzCy) = Jn AVzZ(r) ———— dr
e dr
- MR -y Jy drérd dr
2rn u R o dr ; yz +re
= 4 R ¢y Jy drdrd dr 13
e2n u R o dr y'z +r

The distribution of circulation along the rotor radius

is assumed to be parabolic:

Crd) =ar?CR-r) (140
darar)
= ar (2R - 3r D (15
dr
Then we have:
o R + ¥y 3n y
-———— a (2R —mm) ¥y (PBy>0
2n u R 4
Vz(y) = 16>
4 R + ¥y 3n y
-—— a (2R 4+ D y (OOY=-R
2n u R 4

The parameter a is determined by setting lift = weight:

R
T=9p rerd VT(r) dr
Jo
R 2
= p ar (CR-rdJ>Qrdr =W 1?7
Jo
20 W 0
a " —o— = (20 — Cr 18

p OR R
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The normalized nonuniform downwash is defined as:
vYzCyd > 4 > 4 3ny
Cz = —_— - Cp 4+ —)—L2 ¥ D
a R R R 4 R
C D
en u
YzCyd 1 vz(y)
= = 19
20CCTORd 7( 2D 10 2 Vnot

2 Ynot is the uniform downwash at tail surfaces from
the momentum theory. The lateral distribution of nondimen-
sional downwash of eq.(19) for u=0.22 is shown in Fig.3-1.

Following the same procedure, we obtain:

T

ATCCrD 1 r z C uR +r siny ) dy
AVy(r) = J

2n ut R = r C sz + yz) r cosy

ATCrD 1 Jan/z z C u R +r siny > dy

2n 4 R n n 2 sz + rzsin?w
ATCrD 1
= 20>
an
Y 1?4 z?
T

Then we have:

1 ar 2R - 3r >
Vy(z) = JR dr
o

2
A f’ r® + z°

+ 3(—>% 1n ¢ > ) Cz>0 C21)
R z

The normalized nonuniform sidewash is defined as:
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- Vy(zd) {/' z 4z
Cy‘———;— =[J( 1 + (— - e——
a R R R
C D
en u
z R + Rz+ zz
+ 3—>%1n¢ > D
R z
1 Vy(2)
= z>0) 22>
10 2 Vnot

For 2<0, we have Vy(-z> = - Vy(z).
The longitudinal distribution of the sidewash given by
- eq.(22) for u=0.22 is shown in Fig.3-2.

For |z| < 0.2 R, we use:

a R? 4y >
VyCz) &2 ¢ ——0o4— (1 - —" ) Cz < 0 (23
- 2n R

3) Effects on Tail Surfaces
When there is sideslip, the position of a spanwise
section of the horizontal tail relative to the center line
of the wake at the wake layer will be:
y=(yh+1‘hx ﬁ,) 24
Then we have the roll moment contribution of the hori-

zontal tail:

e Rh
L .
Mxh = —— Vh Hc Ca J vz( yh+Thxﬁr)yhdyh

2 Rrh
P Vh Hc a . .
= C > C 457 R u CRR*- 160 u R*CRW
- g60n u R

4C 13571 T CRWO* =320 RT. (RO 3
hx hx

ORA@NAL o0 0
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4+ 90n u R CRm? Tix 3 + 90n C(RM? T:x I

Py Py S %
157 R Thx R - 9n Thx 3D 25

The terms for forming the linearized approximation are

given below:
L -]
fo) Vh Hc Ca a Rh

Mxh = (9n Rh - 32 R D
rah-o 192 n

c26d

L 3
dMxh fol Vh Hc Ca a Thxkh

- - C27n Rh - 64 R D
83, [,=0 192n u R

Similarly, the pitch moment contributions

e y r rh
Myh = —— ’Vh Hc Ca Thx
2 J-rn

vzC yh+Thxﬁf) dyh

e Vh Hc a Thx . .
= ( > ¢ 32 R (RnR) - 91 CRK)
192n ¢ R

2 4
+ €96u T,_Rh R® - 36n 4 R T, (R
2 2 2 2
+ (96 R T, Rh - S4n T, (R 13
9 B3 4 &4
-12n uRT, A -on T ") 1)

and the required terms:

1 8
pV H T C, aRC(RW
Myh = C > (32 R - On Rh D

Brl-O 192n u R

28)

2 1
oMyh pV, H T C aRRh
- - —(8R -3r Rh)
oB,  £,=0 16n
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For the tail rotor thrust contribution, we begin from

the local angle of attack of the tail rotor:

Vy(2z) a R? s

4z
o = — 2 ——C1 - D Cz < (¢)) 29D

v en v R
T T

Thrust contributions of the tail rotor due to nonuni-
form sidewash at zero sideslip angle and zero angle of

attack can be given as:

aT
T

AaT(z) ds(2z) = 0 C30)

s Oa
T
When there is an angle of attack variation, the tail

rotor thrust will vary as:

aT
T

31

AT = K a (2D ds
T T

1 1

1

1l da
T

K is a parameter decided by the correlation with flight
test.

The vertical position of a point of the tail rotor rela-
tive to the wake is

zZ =2z + afT 32>
T Tx

Then:

Az = T Aot ds = dx Az 33
Tx 1 l

From experimental datali2i), the effect of viscosity will

be significant at z < 0.1R. Therefore, let Ao =0 for |z| < O.1R.

The thrust variation of the tail rotor due to the angle of attack
variation can be obtained by integrating Eq.(31) with the relation

EqQ.(33). The same procedure also applies to the vertical tail.



